論文の概要: Polygonizer: An auto-regressive building delineator
- arxiv url: http://arxiv.org/abs/2304.04048v1
- Date: Sat, 8 Apr 2023 15:36:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 18:06:46.415870
- Title: Polygonizer: An auto-regressive building delineator
- Title(参考訳): Polygonizer: 自動回帰型ビルディリニア
- Authors: Maxim Khomiakov, Michael Riis Andersen, Jes Frellsen
- Abstract要約: 本稿では,直接形状推定が可能なイメージ・ツー・シーケンス・モデルを提案する。
リモートセンシングアプリケーションでよく見られる変動やアーチファクトに対応する画像入力の摂動など、モデルの性能を様々な方法で示す。
- 参考スコア(独自算出の注目度): 12.693238093510072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In geospatial planning, it is often essential to represent objects in a
vectorized format, as this format easily translates to downstream tasks such as
web development, graphics, or design. While these problems are frequently
addressed using semantic segmentation, which requires additional
post-processing to vectorize objects in a non-trivial way, we present an
Image-to-Sequence model that allows for direct shape inference and is ready for
vector-based workflows out of the box. We demonstrate the model's performance
in various ways, including perturbations to the image input that correspond to
variations or artifacts commonly encountered in remote sensing applications.
Our model outperforms prior works when using ground truth bounding boxes (one
object per image), achieving the lowest maximum tangent angle error.
- Abstract(参考訳): 地理空間計画では、この形式はweb開発、グラフィックス、デザインといった下流のタスクに容易に変換するため、ベクトル化されたフォーマットでオブジェクトを表現することがしばしば必要となる。
これらの問題は、非自明な方法でオブジェクトをベクトル化するために追加の処理後処理を必要とするセマンティックセグメンテーション(セマンティックセグメンテーション)によって頻繁に解決されるが、画像からシーケンスへの直接推論が可能で、最初からベクトルベースのワークフローに対応できるモデルを提案する。
我々は、リモートセンシングアプリケーションでよく見られるバリエーションやアーティファクトに対応する画像入力に対する摂動を含む、様々な方法でモデルの性能を示す。
我々のモデルは、基底真理バウンディングボックス(画像毎に1つのオブジェクト)を使用する場合の先行処理よりも優れており、最大接角誤差が最低となる。
関連論文リスト
- Segmentation-guided Layer-wise Image Vectorization with Gradient Fills [6.037332707968933]
そこで本稿では,画像を勾配を埋め込んだ簡潔なベクトルグラフに変換するためのセグメンテーション誘導ベクトル化フレームワークを提案する。
組込み勾配認識セグメンテーションの指導により, 段階的に勾配を埋め込んだB'ezierパスを出力に付加する。
論文 参考訳(メタデータ) (2024-08-28T12:08:25Z) - FUSE-ing Language Models: Zero-Shot Adapter Discovery for Prompt Optimization Across Tokenizers [55.2480439325792]
FUSEは、あるモデルのテキスト埋め込み空間から別のモデルへのマッピングを行うアダプタ層を、異なるトークン化器にまたがっても近似するアプローチである。
画像キャプションと感情に基づく画像キャプションのための視覚言語モデルと因果言語モデルに対する多目的最適化によるアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-08-09T02:16:37Z) - SHIC: Shape-Image Correspondences with no Keypoint Supervision [106.99157362200867]
正準曲面マッピングは、オブジェクトの各ピクセルを3Dテンプレートの対応する点に割り当てることで、キーポイント検出を一般化する。
人間の分析のためにDensePoseによって人気を得た著者は、この概念をより多くのカテゴリに適用しようと試みている。
そこで本研究では,手動による指導を伴わない標準地図学習手法ShiCを紹介し,ほとんどのカテゴリにおいて教師付き手法よりも優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2024-07-26T17:58:59Z) - SuperSVG: Superpixel-based Scalable Vector Graphics Synthesis [66.44553285020066]
SuperSVGは、高速かつ高精度な画像ベクトル化を実現するスーパーピクセルベースのベクトル化モデルである。
本稿では,2段階の自己学習フレームワークを提案する。そこでは,粗い段階モデルを用いて主構造を再構築し,細部を充実させるために改良段階モデルを用いる。
再現精度と推定時間の観点から, 最先端手法と比較して, 提案手法の優れた性能を示す実験を行った。
論文 参考訳(メタデータ) (2024-06-14T07:43:23Z) - DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
提案手法は,2つのタスクの結合を軌道修正問題として定式化する。
この統合タスクに対処するために、オブジェクトの存在, ポーズ, マルチモーダルな将来の振る舞いを推測する精細化変換器を設計する。
実験では、我々のモデルはArgoverse 2 Sensor and Openデータセットの最先端性よりも優れています。
論文 参考訳(メタデータ) (2024-06-06T18:12:04Z) - Hierarchical Vector Quantized Transformer for Multi-class Unsupervised
Anomaly Detection [24.11900895337062]
教師なし画像異常検出(UAD)は、正常サンプルの堅牢かつ識別的な表現を学習することを目的としている。
本稿では,複数のクラスに統一されたフレームワークを構築することに焦点を当てる。
論文 参考訳(メタデータ) (2023-10-22T08:20:33Z) - A Generalist Framework for Panoptic Segmentation of Images and Videos [61.61453194912186]
我々は,タスクの帰納バイアスに頼ることなく,離散的なデータ生成問題としてパノプティクスセグメンテーションを定式化する。
単純な構造と一般的な損失関数を持つパノスコープマスクをモデル化するための拡散モデルを提案する。
本手法は,動画を(ストリーミング環境で)モデル化し,オブジェクトのインスタンスを自動的に追跡することを学ぶ。
論文 参考訳(メタデータ) (2022-10-12T16:18:25Z) - BoundarySqueeze: Image Segmentation as Boundary Squeezing [104.43159799559464]
本研究では,オブジェクトとシーンの微細な高画質画像分割のための新しい手法を提案する。
形態素画像処理技術による拡張と浸食に着想を得て,画素レベルのセグメンテーション問題をスクイーズ対象境界として扱う。
提案手法は,COCO,Cityscapesのインスタンス・セグメンテーション・セグメンテーション・セグメンテーションにおいて大きく向上し,同一条件下での精度・速度ともに従来のPointRendよりも優れていた。
論文 参考訳(メタデータ) (2021-05-25T04:58:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。