Deep Generative Modeling with Backward Stochastic Differential Equations
- URL: http://arxiv.org/abs/2304.04049v1
- Date: Sat, 8 Apr 2023 15:37:38 GMT
- Title: Deep Generative Modeling with Backward Stochastic Differential Equations
- Authors: Xingcheng Xu
- Abstract summary: This paper proposes a novel deep generative model, called BSDE-Gen, which combines the flexibility of backward differential equations with the power of deep neural networks.
The incorporation of the uncertainty in the generative modeling process makes BSDE-Gen an effective and natural approach for generating high-dimensional data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel deep generative model, called BSDE-Gen, which
combines the flexibility of backward stochastic differential equations (BSDEs)
with the power of deep neural networks for generating high-dimensional complex
target data, particularly in the field of image generation. The incorporation
of stochasticity and uncertainty in the generative modeling process makes
BSDE-Gen an effective and natural approach for generating high-dimensional
data. The paper provides a theoretical framework for BSDE-Gen, describes its
model architecture, presents the maximum mean discrepancy (MMD) loss function
used for training, and reports experimental results.
Related papers
- On the Trajectory Regularity of ODE-based Diffusion Sampling [79.17334230868693]
Diffusion-based generative models use differential equations to establish a smooth connection between a complex data distribution and a tractable prior distribution.
In this paper, we identify several intriguing trajectory properties in the ODE-based sampling process of diffusion models.
arXiv Detail & Related papers (2024-05-18T15:59:41Z) - CGNSDE: Conditional Gaussian Neural Stochastic Differential Equation for Modeling Complex Systems and Data Assimilation [1.4322470793889193]
A new knowledge-based and machine learning hybrid modeling approach, called conditional neural differential equation (CGNSDE), is developed.
In contrast to the standard neural network predictive models, the CGNSDE is designed to effectively tackle both forward prediction tasks and inverse state estimation problems.
arXiv Detail & Related papers (2024-04-10T05:32:03Z) - Coupling Graph Neural Networks with Fractional Order Continuous
Dynamics: A Robustness Study [24.950680319986486]
We rigorously investigate the robustness of graph neural fractional-order differential equation (FDE) models.
This framework extends beyond traditional graph neural (integer-order) ordinary differential equation (ODE) models by implementing the time-fractional Caputo derivative.
arXiv Detail & Related papers (2024-01-09T02:56:52Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
This work extends the reach of generative models into physical problem domains.
We present an efficient approach to promote consistency with the underlying PDE.
We showcase the potential and versatility of score-based generative models in various physics tasks.
arXiv Detail & Related papers (2023-12-16T19:56:10Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
Diffusion models (DMs) represent state-of-the-art generative models for continuous inputs.
We introduce a novel generative modeling framework grounded in textbfphase space dynamics
Our framework demonstrates the capability to generate realistic data points at an early stage of dynamics propagation.
arXiv Detail & Related papers (2023-10-11T18:38:28Z) - HyperSINDy: Deep Generative Modeling of Nonlinear Stochastic Governing
Equations [5.279268784803583]
We introduce HyperSINDy, a framework for modeling dynamics via a deep generative model of sparse governing equations from data.
Once trained, HyperSINDy generates dynamics via a differential equation whose coefficients are driven by a white noise.
In experiments, HyperSINDy recovers ground truth governing equations, with learnedity scaling to match that of the data.
arXiv Detail & Related papers (2023-10-07T14:41:59Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Deep neural network enabled corrective source term approach to hybrid
analysis and modeling [0.0]
Hybrid Analysis and Modeling (HAM) is an emerging modeling paradigm which aims to combine physics-based modeling and data-driven modeling.
We introduce, justify and demonstrate a novel approach to HAM -- the Corrective Source Term Approach (CoSTA)
arXiv Detail & Related papers (2021-05-24T20:17:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.