論文の概要: Universal Semi-Supervised Learning for Medical Image Classification
- arxiv url: http://arxiv.org/abs/2304.04059v2
- Date: Tue, 2 Jul 2024 12:28:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 08:40:09.590440
- Title: Universal Semi-Supervised Learning for Medical Image Classification
- Title(参考訳): 医用画像分類のためのユニバーサル半教師付き学習
- Authors: Lie Ju, Yicheng Wu, Wei Feng, Zhen Yu, Lin Wang, Zhuoting Zhu, Zongyuan Ge,
- Abstract要約: セミ教師付き学習(SSL)は、適切なラベル付きトレーニングデータを収集するコストを削減できるため、多くの注目を集めている。
従来のSSLは、ラベル付きデータとラベルなしデータが同じディストリビューションのものであるべきだという仮定に基づいて構築されている。
本研究では,未表示のラベル付きデータを利用した半教師付き医療画像分類のための統一的なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 21.781201758182135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning (SSL) has attracted much attention since it reduces the expensive costs of collecting adequate well-labeled training data, especially for deep learning methods. However, traditional SSL is built upon an assumption that labeled and unlabeled data should be from the same distribution \textit{e.g.,} classes and domains. However, in practical scenarios, unlabeled data would be from unseen classes or unseen domains, and it is still challenging to exploit them by existing SSL methods. Therefore, in this paper, we proposed a unified framework to leverage these unseen unlabeled data for open-scenario semi-supervised medical image classification. We first design a novel scoring mechanism, called dual-path outliers estimation, to identify samples from unseen classes. Meanwhile, to extract unseen-domain samples, we then apply an effective variational autoencoder (VAE) pre-training. After that, we conduct domain adaptation to fully exploit the value of the detected unseen-domain samples to boost semi-supervised training. We evaluated our proposed framework on dermatology and ophthalmology tasks. Extensive experiments demonstrate our model can achieve superior classification performance in various medical SSL scenarios. The code implementations are accessible at: https://github.com/PyJulie/USSL4MIC.
- Abstract(参考訳): 半教師付き学習(SSL)は、特にディープラーニング手法において、適切なラベル付きトレーニングデータを収集するコストを削減できるため、多くの注目を集めている。
しかし、従来のSSLは、ラベル付きデータとラベルなしデータは、同じ分布 \textit{e g ,} クラスとドメインのものであるべきだという仮定に基づいて構築されている。
しかし、実際のシナリオでは、ラベルなしデータは未確認のクラスや未確認のドメインからのものであり、既存のSSLメソッドでそれらを活用することは依然として困難である。
そこで本稿では,この未表示データを利用した半教師付き医療画像分類のための統一的な枠組みを提案する。
まず,両経路外乱推定と呼ばれる新しいスコアリング機構を設計し,未知のクラスからサンプルを同定する。
一方、未確認領域のサンプルを抽出するために、有効な変分オートエンコーダ(VAE)プリトレーニングを適用する。
その後、検出された未確認領域のサンプルの価値を完全に活用し、半教師付きトレーニングを促進するためにドメイン適応を行う。
提案する皮膚科・眼科領域の枠組みについて検討した。
広範囲な実験により、医療用SSLシナリオにおいて、より優れた分類性能が得られることが実証された。
コードの実装は、https://github.com/PyJulie/USSL4MICでアクセスできます。
関連論文リスト
- A Closer Look at Benchmarking Self-Supervised Pre-training with Image Classification [51.35500308126506]
自己教師付き学習(SSL)は、データ自体が監視を提供する機械学習アプローチであり、外部ラベルの必要性を排除している。
SSLの分類に基づく評価プロトコルがどのように相関し、異なるデータセットのダウンストリーム性能を予測するかを検討する。
論文 参考訳(メタデータ) (2024-07-16T23:17:36Z) - Towards Generic Semi-Supervised Framework for Volumetric Medical Image
Segmentation [19.09640071505051]
UDAやSemiDGといった設定を扱う汎用SSLフレームワークを開発した。
提案するフレームワークを,SSL,クラス不均衡SSL,UDA,セミDGの4つのベンチマークデータセット上で評価した。
その結果,4つの設定にまたがる最先端の手法と比較して,顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-10-17T14:58:18Z) - Semi-Supervised Learning in the Few-Shot Zero-Shot Scenario [14.916971861796384]
Semi-Supervised Learning (SSL)は、ラベル付きデータとラベルなしデータの両方を利用して、モデルのパフォーマンスを向上させるフレームワークである。
既存のSSLメソッドを拡張し、特定のクラスが欠落している状況に対処するための一般的なアプローチを提案する。
実験の結果,最先端のSSL,オープンセットのSSL,オープンワールドのSSLメソッドと比較して,精度が大幅に向上した。
論文 参考訳(メタデータ) (2023-08-27T14:25:07Z) - SPLAL: Similarity-based pseudo-labeling with alignment loss for
semi-supervised medical image classification [11.435826510575879]
半教師付き学習(SSL)メソッドはラベル付きデータとラベルなしデータの両方を活用することで課題を軽減することができる。
医用画像分類のためのSSL法では,(1)ラベルなしデータセットの画像に対する信頼性の高い擬似ラベルの推定,(2)クラス不均衡によるバイアスの低減という2つの課題に対処する必要がある。
本稿では,これらの課題を効果的に解決する新しいSSLアプローチであるSPLALを提案する。
論文 参考訳(メタデータ) (2023-07-10T14:53:24Z) - A semi-supervised Teacher-Student framework for surgical tool detection
and localization [2.41710192205034]
外科的ツール検出のパラダイムにおいて,半教師付き学習(SSL)フレームワークを導入する。
提案手法では,教師-学生共同学習を初期化するラベル付きデータを用いたモデルを訓練する。
m2cai16-tool-locations データセットの結果は、異なる教師付きデータ設定に対するアプローチの優位性を示している。
論文 参考訳(メタデータ) (2022-08-21T17:21:31Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Pseudo-Labeling Based Practical Semi-Supervised Meta-Training for
Few-Shot Learning [125.98370880855579]
擬似ラベルベースメタラーニング(PLML)という,シンプルで効果的なメタトレーニングフレームワークを提案する。
まず、一般的な半教師付き学習(SSL)を用いて分類器を訓練し、ラベルなしデータの擬似ラベルを得る。
ラベル付きおよび擬似ラベル付きデータから数ショットのタスクを構築し、特徴の平滑化と雑音抑圧を伴う新しい微調整法を設計する。
論文 参考訳(メタデータ) (2022-07-14T10:53:53Z) - DATA: Domain-Aware and Task-Aware Pre-training [94.62676913928831]
我々は、自己教師付き学習(SSL)に特化した、シンプルで効果的なNASアプローチであるDataを提示する。
提案手法は,画像分類,オブジェクト検出,セマンティックセグメンテーションなど,下流タスクにおける計算コストの広い範囲にわたる有望な結果を実現する。
論文 参考訳(メタデータ) (2022-03-17T02:38:49Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
オープンセット半教師付き学習(Open-set SSL)では、ラベルなしデータにOOD(Out-of-distribution)サンプルを含む、難しいが実用的なシナリオを調査する。
我々は、OODデータの存在を効果的に活用し、特徴学習を増強する新しいトレーニングメカニズムを提案する。
我々のアプローチは、オープンセットSSLのパフォーマンスを大幅に向上させ、最先端技術よりも大きなマージンで性能を向上します。
論文 参考訳(メタデータ) (2021-08-12T09:14:44Z) - A Boundary Based Out-of-Distribution Classifier for Generalized
Zero-Shot Learning [83.1490247844899]
Generalized Zero-Shot Learning (GZSL)は多くの現実的なシナリオにおいて有望な見通しを持つ挑戦的なトピックである。
本研究では,見知らぬ領域を学習用サンプルのみを用いて分類する境界に基づくアウト・オブ・ディストリビューション(OOD)分類器を提案する。
我々は、AWA1、AWA2、CUB、FLO、SUNを含む5つの人気のあるベンチマークデータセットに対して、我々のアプローチを広範囲に検証する。
論文 参考訳(メタデータ) (2020-08-09T11:27:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。