論文の概要: Certifiable Black-Box Attack: Ensuring Provably Successful Attack for
Adversarial Examples
- arxiv url: http://arxiv.org/abs/2304.04343v1
- Date: Mon, 10 Apr 2023 01:12:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 16:15:50.600342
- Title: Certifiable Black-Box Attack: Ensuring Provably Successful Attack for
Adversarial Examples
- Title(参考訳): 証明可能なブラックボックス攻撃: 敵の例に対する確実な攻撃の保証
- Authors: Hanbin Hong and Yuan Hong
- Abstract要約: ブラックボックスの敵攻撃は、機械学習モデルを逆転させる強い可能性を示している。
我々は、攻撃の成功率を保証できる認証されたブラックボックス攻撃という、敵対的攻撃の新しいパラダイムを研究するための第一歩を踏み出します。
理論的および実験的な結果により、提案した認証攻撃の有効性が検証された。
- 参考スコア(独自算出の注目度): 11.88824824539345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Black-box adversarial attacks have shown strong potential to subvert machine
learning models. Existing black-box adversarial attacks craft the adversarial
examples by iteratively querying the target model and/or leveraging the
transferability of a local surrogate model. Whether such attack can succeed
remains unknown to the adversary when empirically designing the attack. In this
paper, to our best knowledge, we take the first step to study a new paradigm of
adversarial attacks -- certifiable black-box attack that can guarantee the
attack success rate of the crafted adversarial examples. Specifically, we
revise the randomized smoothing to establish novel theories for ensuring the
attack success rate of the adversarial examples. To craft the adversarial
examples with the certifiable attack success rate (CASR) guarantee, we design
several novel techniques, including a randomized query method to query the
target model, an initialization method with smoothed self-supervised
perturbation to derive certifiable adversarial examples, and a geometric
shifting method to reduce the perturbation size of the certifiable adversarial
examples for better imperceptibility. We have comprehensively evaluated the
performance of the certifiable black-box attack on CIFAR10 and ImageNet
datasets against different levels of defenses. Both theoretical and
experimental results have validated the effectiveness of the proposed
certifiable attack.
- Abstract(参考訳): ブラックボックスの敵攻撃は、機械学習モデルを覆す強力な可能性を示している。
既存のブラックボックス敵攻撃は、ターゲットモデルを反復的にクエリし、またはローカルサロゲートモデルの転送可能性を活用することで敵の例を作る。
このような攻撃が成功するかどうかはまだ明らかになっていない。
本稿では, 敵攻撃の新たなパラダイムとして, 敵攻撃の成功率を保証できる認証されたブラックボックス攻撃について, 最善を尽くすための第一歩を踏み出した。
具体的には, ランダム化平滑化法を改訂し, 攻撃成功率を確保するための新理論を確立した。
検証可能な攻撃成功率(CASR)を保証するために,対象モデルを問合せするためのランダムなクエリ手法,認証可能な敵を導出するためのスムーズな自己教師型摂動の初期化手法,認証可能な敵の摂動サイズを削減する幾何学的シフト手法など,いくつかの新しい手法を設計する。
我々は、CIFAR10およびImageNetデータセットに対する認証ブラックボックス攻撃の性能を、異なるレベルの防御に対して総合的に評価した。
理論および実験の結果から,提案する検証可能な攻撃の有効性が検証された。
関連論文リスト
- Enhancing the Antidote: Improved Pointwise Certifications against
Poisoning Attacks [32.63920797751968]
毒殺攻撃は、トレーニングコーパスに小さな変更を加えることで、モデル行動に不当に影響を及ぼす可能性がある。
限られた数のトレーニングサンプルを修正した敵攻撃に対して,サンプルの堅牢性を保証することを可能とする。
論文 参考訳(メタデータ) (2023-08-15T03:46:41Z) - Generalizable Black-Box Adversarial Attack with Meta Learning [54.196613395045595]
ブラックボックス攻撃では、ターゲットモデルのパラメータが不明であり、攻撃者はクエリのフィードバックに基づいて、クエリの予算に基づいて摂動を成功させることを目指している。
本稿では,実例レベルの逆転可能性という,過去の攻撃に対するフィードバック情報を活用することを提案する。
この2種類の逆転送性を持つフレームワークは,市販のクエリベースのアタック手法と自然に組み合わせて性能を向上させることができる。
論文 参考訳(メタデータ) (2023-01-01T07:24:12Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
我々は、攻撃最適化中に局所最小限を避けるための誘導機構を開発し、G-PGAと呼ばれる新たな攻撃に繋がる。
修正された攻撃では、ランダムに再起動したり、多数の攻撃を繰り返したり、最適なステップサイズを検索したりする必要がありません。
効果的な攻撃以上に、G-PGAは敵防御における勾配マスキングによる解離性堅牢性を明らかにするための診断ツールとして用いられる。
論文 参考訳(メタデータ) (2022-12-30T18:45:23Z) - Rethinking Textual Adversarial Defense for Pre-trained Language Models [79.18455635071817]
文献レビューでは、事前訓練された言語モデル(PrLM)が敵の攻撃に弱いことが示されている。
本稿では、現在の敵攻撃アプローチにより、より自然で知覚不能な敵の例を生成するための新しい指標(異常の度合い)を提案する。
我々は,我々のユニバーサル・ディフェンス・フレームワークが,他の特定のディフェンスと同等あるいはそれ以上のアフターアタック・ディフェンスの精度を達成することを示す。
論文 参考訳(メタデータ) (2022-07-21T07:51:45Z) - Stochastic Variance Reduced Ensemble Adversarial Attack for Boosting the
Adversarial Transferability [20.255708227671573]
ブラックボックスの敵攻撃は、あるモデルから別のモデルに転送することができる。
本研究では,分散縮小アンサンブル攻撃と呼ばれる新しいアンサンブル攻撃法を提案する。
実験結果から,提案手法は既存のアンサンブル攻撃を著しく上回り,対向移動性を向上する可能性が示唆された。
論文 参考訳(メタデータ) (2021-11-21T06:33:27Z) - Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks [56.96241557830253]
転送ベースの敵攻撃はブラックボックス設定におけるモデルロバスト性を効果的に評価することができる。
本稿では,異なるクラスを対象にした対角的例を生成する条件生成攻撃モデルを提案する。
提案手法は,既存の手法と比較して,標的となるブラックボックス攻撃の成功率を大幅に向上させる。
論文 参考訳(メタデータ) (2021-07-05T06:17:47Z) - Direction-Aggregated Attack for Transferable Adversarial Examples [10.208465711975242]
深層ニューラルネットワークは、入力に知覚不可能な変化を課すことによって作られる敵の例に弱い。
逆例は、モデルとそのパラメータが利用可能なホワイトボックス設定で最も成功した。
我々は,移動可能な攻撃事例を提供する方向集約型攻撃を提案する。
論文 参考訳(メタデータ) (2021-04-19T09:54:56Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
敵攻撃は、安全クリティカルなアプリケーションにおいて堅牢なモデルを評価し、選択するための重要な方法である。
本稿では,AdaBelief Iterative Fast Gradient Method (ABI-FGM)とCrop-Invariant attack Method (CIM)を提案する。
我々の手法は、最先端の勾配に基づく攻撃法よりも成功率が高い。
論文 参考訳(メタデータ) (2021-02-07T06:00:36Z) - Adversarial Example Games [51.92698856933169]
Adrial Example Games (AEG) は、敵の例の製作をモデル化するフレームワークである。
AEGは、ある仮説クラスからジェネレータとアバーサを反対に訓練することで、敵の例を設計する新しい方法を提供する。
MNIST と CIFAR-10 データセットに対する AEG の有効性を示す。
論文 参考訳(メタデータ) (2020-07-01T19:47:23Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
深層ニューラルネットワーク(DNN)に対するブラックボックス攻撃の研究
我々は, 代理バイアスに対して頑健な, 対向移動可能性の新たなメカニズムを開発する。
ベンチマークデータセットの実験と実世界のAPIに対する攻撃は、提案手法の優れた攻撃性能を示す。
論文 参考訳(メタデータ) (2020-06-15T16:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。