論文の概要: Deep Active Alignment of Knowledge Graph Entities and Schemata
- arxiv url: http://arxiv.org/abs/2304.04389v3
- Date: Sat, 17 Jun 2023 13:17:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 03:03:41.881668
- Title: Deep Active Alignment of Knowledge Graph Entities and Schemata
- Title(参考訳): 知識グラフエンティティとスキーマの深いアクティブアライメント
- Authors: Jiacheng Huang and Zequn Sun and Qijin Chen and Xiaozhou Xu and Weijun
Ren and Wei Hu
- Abstract要約: 我々は,深層学習と能動学習に基づく新しいKGアライメント手法であるDAAKGを提案する。
ディープラーニングでは、エンティティ、関係、クラスの埋め込みを学び、それらを半教師付きで協調的に調整する。
アクティブな学習では、エンティティ、リレーション、クラスペアが推測できる確率を推定し、人間のラベル付けに最適なバッチを選択する。
- 参考スコア(独自算出の注目度): 20.100378168629195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge graphs (KGs) store rich facts about the real world. In this paper,
we study KG alignment, which aims to find alignment between not only entities
but also relations and classes in different KGs. Alignment at the entity level
can cross-fertilize alignment at the schema level. We propose a new KG
alignment approach, called DAAKG, based on deep learning and active learning.
With deep learning, it learns the embeddings of entities, relations and
classes, and jointly aligns them in a semi-supervised manner. With active
learning, it estimates how likely an entity, relation or class pair can be
inferred, and selects the best batch for human labeling. We design two
approximation algorithms for efficient solution to batch selection. Our
experiments on benchmark datasets show the superior accuracy and generalization
of DAAKG and validate the effectiveness of all its modules.
- Abstract(参考訳): 知識グラフ(KG)は現実世界に関する豊富な事実を格納する。
本稿では, 実体だけでなく, 異なるkgにおける関係とクラス間のアライメントを見出すことを目的としたkgアライメントについて検討する。
エンティティレベルでのアライメントは、スキーマレベルでアライメントをクロスコンパイルする。
我々は,深層学習と能動学習に基づく新しいKGアライメント手法であるDAAKGを提案する。
ディープラーニングでは、エンティティ、関係、クラスの埋め込みを学び、それらを半教師付きで協調的に調整する。
アクティブな学習では、エンティティ、リレーション、クラスペアが推測できる確率を推定し、人間のラベル付けに最適なバッチを選択する。
バッチ選択の効率的な解法として2つの近似アルゴリズムを設計する。
ベンチマークデータセットを用いた実験により,DAAKGの精度と一般化が向上し,全モジュールの有効性が検証された。
関連論文リスト
- BAL: Balancing Diversity and Novelty for Active Learning [53.289700543331925]
多様な不確実なデータのバランスをとるために適応的なサブプールを構築する新しいフレームワークであるBalancing Active Learning (BAL)を導入する。
我々のアプローチは、広く認識されているベンチマークにおいて、確立されたすべてのアクティブな学習方法より1.20%優れています。
論文 参考訳(メタデータ) (2023-12-26T08:14:46Z) - A Fused Gromov-Wasserstein Framework for Unsupervised Knowledge Graph
Entity Alignment [22.526341223786375]
本稿では,FGW(Fused Gromov-Wasserstein)距離を利用した非教師なしエンティティアライメントフレームワークFGWEAを紹介する。
我々は,FGWEAが,最先端管理エンティティアライメント手法を含む21の競争ベースラインを超えることを示す。
論文 参考訳(メタデータ) (2023-05-11T05:17:54Z) - Investigating Graph Structure Information for Entity Alignment with
Dangling Cases [31.779386064600956]
エンティティアライメントは、異なる知識グラフ(KG)における等価なエンティティを見つけることを目的としている。
Weakly-optimal Graph Contrastive Learning (WOGCL) と呼ばれる新しいエンティティアライメントフレームワークを提案する。
We show that WOGCL are outperforms the current-of-the-art method with pure structure information in traditional (relaxed) and dangling settings。
論文 参考訳(メタデータ) (2023-04-10T17:24:43Z) - Multilingual Knowledge Graph Completion with Self-Supervised Adaptive
Graph Alignment [69.41986652911143]
知識グラフ(KG)における行方不明事象を予測するための,新たな自己教師付き適応グラフアライメント(SS-AGA)手法を提案する。
SS-AGAはすべてのKGをグラフ全体として新しいエッジタイプとしてアライメントする。
パブリック多言語DBPedia KGおよび新たに開発された産業多言語EコマースKGの実験は、SS-AGAの有効性を実証的に実証している。
論文 参考訳(メタデータ) (2022-03-28T18:00:51Z) - SelfKG: Self-Supervised Entity Alignment in Knowledge Graphs [24.647609970140095]
我々は,自己指導型学習目標であるSelfKGを開発した。
我々は、SelfKGが最先端の教師付きベースラインと同等あるいは同等の結果が得られることを示す。
SelfKGのパフォーマンスは、自己教師型学習がKGにおけるエンティティアライメントに大きな可能性をもたらすことを示唆している。
論文 参考訳(メタデータ) (2022-03-02T11:40:37Z) - RAGA: Relation-aware Graph Attention Networks for Global Entity
Alignment [14.287681294725438]
実体と関係の相互作用を捉えるために,Relation-aware Graph Attention Networksに基づく新しいフレームワークを提案する。
本フレームワークでは,エンティティ情報を関係に分散し,関係情報をエンティティに集約する自己認識機構を採用している。
論文 参考訳(メタデータ) (2021-03-01T06:30:51Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
知識グラフ(KG)は、推薦システムにおいてますます重要な役割を果たす。
既存のGNNベースのモデルは、きめ細かいインテントレベルでのユーザ項目関係の特定に失敗します。
本稿では,新しいモデルである知識グラフベースインテントネットワーク(kgin)を提案する。
論文 参考訳(メタデータ) (2021-02-14T03:21:36Z) - CoMatch: Semi-supervised Learning with Contrastive Graph Regularization [86.84486065798735]
CoMatchは、支配的なアプローチを統一する、新しい半教師付き学習手法である。
複数のデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-11-23T02:54:57Z) - Cross-lingual Entity Alignment with Incidental Supervision [76.66793175159192]
本稿では,多言語KGとテキストコーパスを共通埋め込み方式で共同で表現する,偶発的に教師付きモデルであるJEANSを提案する。
ベンチマークデータセットの実験では、JEANSがエンティティアライメントとインシデントインシデントインシデントインスペクションの改善を期待できる結果となった。
論文 参考訳(メタデータ) (2020-05-01T01:53:56Z) - KACC: A Multi-task Benchmark for Knowledge Abstraction, Concretization
and Completion [99.47414073164656]
包括的知識グラフ(KG)は、インスタンスレベルのエンティティグラフとオントロジーレベルの概念グラフを含む。
2ビューのKGは、知識の抽象化、包括化、完成に関する人間の能力を「シミュレーション」するためのモデルのためのテストベッドを提供する。
我々は,データセットのスケール,タスクカバレッジ,難易度の観点から,既存のベンチマークを改善した統一KGベンチマークを提案する。
論文 参考訳(メタデータ) (2020-04-28T16:21:57Z) - A Comprehensive Benchmark Framework for Active Learning Methods in
Entity Matching [17.064993611446898]
本稿では,EMのための統合型アクティブラーニングベンチマークフレームワークを構築する。
このフレームワークの目的は、積極的学習の組み合わせがEMにどのような効果をもたらすかについて、実践者のための具体的なガイドラインを可能にすることである。
また、F1スコアの観点から学習モデルの品質を約9%向上し、モデルの品質に影響を与えることなく、サンプル選択のレイテンシを最大10倍削減する新しい最適化も含んでいる。
論文 参考訳(メタデータ) (2020-03-29T19:08:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。