BerDiff: Conditional Bernoulli Diffusion Model for Medical Image
Segmentation
- URL: http://arxiv.org/abs/2304.04429v1
- Date: Mon, 10 Apr 2023 07:21:38 GMT
- Title: BerDiff: Conditional Bernoulli Diffusion Model for Medical Image
Segmentation
- Authors: Tao Chen, Chenhui Wang, Hongming Shan
- Abstract summary: We propose a conditional Bernoulli Diffusion model for medical image segmentation (BerDiff)
Our results show that our BerDiff outperforms other recently published state-of-the-art methods.
- Score: 19.036821997968552
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Medical image segmentation is a challenging task with inherent ambiguity and
high uncertainty, attributed to factors such as unclear tumor boundaries and
multiple plausible annotations. The accuracy and diversity of segmentation
masks are both crucial for providing valuable references to radiologists in
clinical practice. While existing diffusion models have shown strong capacities
in various visual generation tasks, it is still challenging to deal with
discrete masks in segmentation. To achieve accurate and diverse medical image
segmentation masks, we propose a novel conditional Bernoulli Diffusion model
for medical image segmentation (BerDiff). Instead of using the Gaussian noise,
we first propose to use the Bernoulli noise as the diffusion kernel to enhance
the capacity of the diffusion model for binary segmentation tasks, resulting in
more accurate segmentation masks. Second, by leveraging the stochastic nature
of the diffusion model, our BerDiff randomly samples the initial Bernoulli
noise and intermediate latent variables multiple times to produce a range of
diverse segmentation masks, which can highlight salient regions of interest
that can serve as valuable references for radiologists. In addition, our
BerDiff can efficiently sample sub-sequences from the overall trajectory of the
reverse diffusion, thereby speeding up the segmentation process. Extensive
experimental results on two medical image segmentation datasets with different
modalities demonstrate that our BerDiff outperforms other recently published
state-of-the-art methods. Our results suggest diffusion models could serve as a
strong backbone for medical image segmentation.
Related papers
- HiDiff: Hybrid Diffusion Framework for Medical Image Segmentation [16.906987804797975]
HiDiff is a hybrid diffusion framework for medical image segmentation.
It can synergize the strengths of existing discriminative segmentation models and new generative diffusion models.
It excels at segmenting small objects and generalizing to new datasets.
arXiv Detail & Related papers (2024-07-03T23:59:09Z) - FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms [60.195642571004804]
We propose FlowSDF, an image-guided conditional flow matching framework to represent the signed distance function (SDF)
By learning a vector field that is directly related to the probability path of a conditional distribution of SDFs, we can accurately sample from the distribution of segmentation masks.
arXiv Detail & Related papers (2024-05-28T11:47:12Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Analysing Diffusion Segmentation for Medical Images [2.387226161755373]
We critically analyse and discuss how diffusion segmentation for medical images differs from diffusion image generation.
We also conduct an assessment how proposed diffusion segmentation architectures perform when trained directly for segmentation.
arXiv Detail & Related papers (2024-03-21T14:45:54Z) - Surf-CDM: Score-Based Surface Cold-Diffusion Model For Medical Image
Segmentation [15.275335829889086]
We propose a conditional score-based generative modeling framework for medical image segmentation.
We evaluate our method on the segmentation of the left ventricle from 65 transthoracic echocardiogram videos.
Our proposed model not only outperformed the compared methods in terms of segmentation accuracy, but also showed potential in estimating segmentation uncertainties.
arXiv Detail & Related papers (2023-12-19T22:50:02Z) - SegRefiner: Towards Model-Agnostic Segmentation Refinement with Discrete
Diffusion Process [102.18226145874007]
We propose a model-agnostic solution called SegRefiner to enhance the quality of object masks produced by different segmentation models.
SegRefiner takes coarse masks as inputs and refines them using a discrete diffusion process.
It consistently improves both the segmentation metrics and boundary metrics across different types of coarse masks.
arXiv Detail & Related papers (2023-12-19T18:53:47Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
We propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM)
Our approach integrates the diffusion model into a standard U-shaped architecture.
We evaluate our method on a single dataset of spine images acquired through X-ray imaging.
arXiv Detail & Related papers (2023-09-12T03:05:00Z) - DFormer: Diffusion-guided Transformer for Universal Image Segmentation [86.73405604947459]
The proposed DFormer views universal image segmentation task as a denoising process using a diffusion model.
At inference, our DFormer directly predicts the masks and corresponding categories from a set of randomly-generated masks.
Our DFormer outperforms the recent diffusion-based panoptic segmentation method Pix2Seq-D with a gain of 3.6% on MS COCO val 2017 set.
arXiv Detail & Related papers (2023-06-06T06:33:32Z) - Denoising Diffusion Semantic Segmentation with Mask Prior Modeling [61.73352242029671]
We propose to ameliorate the semantic segmentation quality of existing discriminative approaches with a mask prior modeled by a denoising diffusion generative model.
We evaluate the proposed prior modeling with several off-the-shelf segmentors, and our experimental results on ADE20K and Cityscapes demonstrate that our approach could achieve competitively quantitative performance.
arXiv Detail & Related papers (2023-06-02T17:47:01Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.