HiDiff: Hybrid Diffusion Framework for Medical Image Segmentation
- URL: http://arxiv.org/abs/2407.03548v1
- Date: Wed, 3 Jul 2024 23:59:09 GMT
- Title: HiDiff: Hybrid Diffusion Framework for Medical Image Segmentation
- Authors: Tao Chen, Chenhui Wang, Zhihao Chen, Yiming Lei, Hongming Shan,
- Abstract summary: HiDiff is a hybrid diffusion framework for medical image segmentation.
It can synergize the strengths of existing discriminative segmentation models and new generative diffusion models.
It excels at segmenting small objects and generalizing to new datasets.
- Score: 16.906987804797975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation has been significantly advanced with the rapid development of deep learning (DL) techniques. Existing DL-based segmentation models are typically discriminative; i.e., they aim to learn a mapping from the input image to segmentation masks. However, these discriminative methods neglect the underlying data distribution and intrinsic class characteristics, suffering from unstable feature space. In this work, we propose to complement discriminative segmentation methods with the knowledge of underlying data distribution from generative models. To that end, we propose a novel hybrid diffusion framework for medical image segmentation, termed HiDiff, which can synergize the strengths of existing discriminative segmentation models and new generative diffusion models. HiDiff comprises two key components: discriminative segmentor and diffusion refiner. First, we utilize any conventional trained segmentation models as discriminative segmentor, which can provide a segmentation mask prior for diffusion refiner. Second, we propose a novel binary Bernoulli diffusion model (BBDM) as the diffusion refiner, which can effectively, efficiently, and interactively refine the segmentation mask by modeling the underlying data distribution. Third, we train the segmentor and BBDM in an alternate-collaborative manner to mutually boost each other. Extensive experimental results on abdomen organ, brain tumor, polyps, and retinal vessels segmentation datasets, covering four widely-used modalities, demonstrate the superior performance of HiDiff over existing medical segmentation algorithms, including the state-of-the-art transformer- and diffusion-based ones. In addition, HiDiff excels at segmenting small objects and generalizing to new datasets. Source codes are made available at https://github.com/takimailto/HiDiff.
Related papers
- FDiff-Fusion:Denoising diffusion fusion network based on fuzzy learning for 3D medical image segmentation [21.882697860720803]
We propose a denoising diffusion fusion network based on fuzzy learning for 3D medical image segmentation (FDiff-Fusion)
By integrating the denoising diffusion model into the classical U-Net network, this model can effectively extract rich semantic information from input medical images.
Results show that FDiff-Fusion significantly improves the Dice scores and HD95 distance on two datasets.
arXiv Detail & Related papers (2024-07-22T02:27:01Z) - FreeSeg-Diff: Training-Free Open-Vocabulary Segmentation with Diffusion Models [56.71672127740099]
We focus on the task of image segmentation, which is traditionally solved by training models on closed-vocabulary datasets.
We leverage different and relatively small-sized, open-source foundation models for zero-shot open-vocabulary segmentation.
Our approach (dubbed FreeSeg-Diff), which does not rely on any training, outperforms many training-based approaches on both Pascal VOC and COCO datasets.
arXiv Detail & Related papers (2024-03-29T10:38:25Z) - DiffVein: A Unified Diffusion Network for Finger Vein Segmentation and
Authentication [50.017055360261665]
We introduce DiffVein, a unified diffusion model-based framework which simultaneously addresses vein segmentation and authentication tasks.
For better feature interaction between these two branches, we introduce two specialized modules.
In this way, our framework allows for a dynamic interplay between diffusion and segmentation embeddings.
arXiv Detail & Related papers (2024-02-03T06:49:42Z) - MosaicFusion: Diffusion Models as Data Augmenters for Large Vocabulary Instance Segmentation [104.03166324080917]
We present MosaicFusion, a simple yet effective diffusion-based data augmentation approach for large vocabulary instance segmentation.
Our method is training-free and does not rely on any label supervision.
Experimental results on the challenging LVIS long-tailed and open-vocabulary benchmarks demonstrate that MosaicFusion can significantly improve the performance of existing instance segmentation models.
arXiv Detail & Related papers (2023-09-22T17:59:42Z) - DFormer: Diffusion-guided Transformer for Universal Image Segmentation [86.73405604947459]
The proposed DFormer views universal image segmentation task as a denoising process using a diffusion model.
At inference, our DFormer directly predicts the masks and corresponding categories from a set of randomly-generated masks.
Our DFormer outperforms the recent diffusion-based panoptic segmentation method Pix2Seq-D with a gain of 3.6% on MS COCO val 2017 set.
arXiv Detail & Related papers (2023-06-06T06:33:32Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - BerDiff: Conditional Bernoulli Diffusion Model for Medical Image
Segmentation [19.036821997968552]
We propose a conditional Bernoulli Diffusion model for medical image segmentation (BerDiff)
Our results show that our BerDiff outperforms other recently published state-of-the-art methods.
arXiv Detail & Related papers (2023-04-10T07:21:38Z) - Diff-UNet: A Diffusion Embedded Network for Volumetric Segmentation [41.608617301275935]
We propose a novel end-to-end framework, called Diff-UNet, for medical volumetric segmentation.
Our approach integrates the diffusion model into a standard U-shaped architecture to extract semantic information from the input volume effectively.
We evaluate our method on three datasets, including multimodal brain tumors in MRI, liver tumors, and multi-organ CT volumes.
arXiv Detail & Related papers (2023-03-18T04:06:18Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Diffusion Models for Implicit Image Segmentation Ensembles [1.444701913511243]
We present a novel semantic segmentation method based on diffusion models.
By modifying the training and sampling scheme, we show that diffusion models can perform lesion segmentation of medical images.
Compared to state-of-the-art segmentation models, our approach yields good segmentation results and, additionally, meaningful uncertainty maps.
arXiv Detail & Related papers (2021-12-06T16:28:15Z) - Label-Efficient Semantic Segmentation with Diffusion Models [27.01899943738203]
We demonstrate that diffusion models can also serve as an instrument for semantic segmentation.
In particular, for several pretrained diffusion models, we investigate the intermediate activations from the networks that perform the Markov step of the reverse diffusion process.
We show that these activations effectively capture the semantic information from an input image and appear to be excellent pixel-level representations for the segmentation problem.
arXiv Detail & Related papers (2021-12-06T15:55:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.