論文の概要: SOOD: Towards Semi-Supervised Oriented Object Detection
- arxiv url: http://arxiv.org/abs/2304.04515v1
- Date: Mon, 10 Apr 2023 11:10:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 15:19:04.393552
- Title: SOOD: Towards Semi-Supervised Oriented Object Detection
- Title(参考訳): sood: 半教師付き指向オブジェクト検出に向けて
- Authors: Wei Hua, Dingkang Liang, Jingyu Li, Xiaolong Liu, Zhikang Zou,
Xiaoqing Ye, Xiang Bai
- Abstract要約: 本稿では, 主流の擬似ラベリングフレームワーク上に構築された, SOOD と呼ばれる, 半教師付きオブジェクト指向物体検出モデルを提案する。
提案した2つの損失をトレーニングした場合,SOODはDOTA-v1.5ベンチマークの様々な設定下で,最先端のSSOD法を超越することを示した。
- 参考スコア(独自算出の注目度): 57.05141794402972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-Supervised Object Detection (SSOD), aiming to explore unlabeled data for
boosting object detectors, has become an active task in recent years. However,
existing SSOD approaches mainly focus on horizontal objects, leaving
multi-oriented objects that are common in aerial images unexplored. This paper
proposes a novel Semi-supervised Oriented Object Detection model, termed SOOD,
built upon the mainstream pseudo-labeling framework. Towards oriented objects
in aerial scenes, we design two loss functions to provide better supervision.
Focusing on the orientations of objects, the first loss regularizes the
consistency between each pseudo-label-prediction pair (includes a prediction
and its corresponding pseudo label) with adaptive weights based on their
orientation gap. Focusing on the layout of an image, the second loss
regularizes the similarity and explicitly builds the many-to-many relation
between the sets of pseudo-labels and predictions. Such a global consistency
constraint can further boost semi-supervised learning. Our experiments show
that when trained with the two proposed losses, SOOD surpasses the
state-of-the-art SSOD methods under various settings on the DOTA-v1.5
benchmark. The code will be available at https://github.com/HamPerdredes/SOOD.
- Abstract(参考訳): 近年,物体検出装置の強化を目的としたラベルなしデータ探索を目的とした半監督対象検出(SSOD)が活発に行われている。
しかし、既存のSSODアプローチは主に水平物体に焦点を合わせ、空中画像に共通する多目的物体を残している。
本稿では,疑似ラベルフレームワークを基盤としたsoudと呼ばれる,新しい半教師付き指向オブジェクト検出モデルを提案する。
航空シーンにおける指向オブジェクトに向けて,2つの損失関数をデザインし,より優れた監視を行う。
物体の向きに焦点をあて、第1の損失は、各擬似ラベル予測ペア間の整合性(予測と対応する擬似ラベルを含む)を、その配向ギャップに基づいて適応重みで規則化する。
画像のレイアウトに着目して、第2の損失は類似性を規則化し、擬似ラベルの集合と予測の間の多対多の関係を明示的に構築する。
このようなグローバル一貫性の制約は、半教師あり学習をさらに促進することができる。
提案した2つの損失をトレーニングした場合,SOODはDOTA-v1.5ベンチマークの様々な設定下で,最先端のSSOD法を超越することを示した。
コードはhttps://github.com/HamPerdredes/SOOD.comから入手できる。
関連論文リスト
- Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
OVAD(Open-vocabulary Aero Object Detection)という,航空物体検出問題の新しい定式化を行った。
本稿では,CLIP-activated students-Teacher DetectionフレームワークであるCastDetを提案する。
本フレームワークは,ロバストなローカライズ教師といくつかのボックス選択戦略を統合し,新しいオブジェクトの高品質な提案を生成する。
論文 参考訳(メタデータ) (2024-11-04T12:59:13Z) - Multi-clue Consistency Learning to Bridge Gaps Between General and Oriented Object in Semi-supervised Detection [26.486535389258965]
半教師あり学習における汎用物体検出とオブジェクト指向物体検出の3つのギャップを実験的に発見する。
本稿では,これらのギャップを埋めるために,MCL(Multi-clue Consistency Learning)フレームワークを提案する。
提案したMCLは,半教師付きオブジェクト指向物体検出タスクにおいて最先端の性能を実現することができる。
論文 参考訳(メタデータ) (2024-07-08T13:14:25Z) - SOOD++: Leveraging Unlabeled Data to Boost Oriented Object Detection [59.868772767818975]
本稿では,SOOD++ と呼ばれる簡易かつ効果的な半教師付きオブジェクト指向検出手法を提案する。
具体的には、空中画像からの物体は、通常任意の向き、小さなスケール、集約である。
様々なラベル付き環境下での多目的オブジェクトデータセットに対する大規模な実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-07-01T07:03:51Z) - Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images [11.217630579076237]
リモートセンシングの分野では、FSOD(Few-shot Object Detection)が注目されている。
本稿では,Few-shot Oriented Object Detection with Memorable Contrastive Learning (FOMC) という,リモートセンシングのための新しいFSOD法を提案する。
具体的には、従来の水平有界ボックスの代わりに指向的有界ボックスを用いて、任意指向の空中オブジェクトのより優れた特徴表現を学習する。
論文 参考訳(メタデータ) (2024-03-20T08:15:18Z) - Object-Centric Multiple Object Tracking [124.30650395969126]
本稿では,多目的追跡パイプラインのためのビデオオブジェクト中心モデルを提案する。
オブジェクト中心のスロットを検出出力に適応するインデックスマージモジュールと、オブジェクトメモリモジュールで構成される。
オブジェクト中心学習に特化して、オブジェクトのローカライゼーションと機能バインディングのためのスパース検出ラベルしか必要としない。
論文 参考訳(メタデータ) (2023-09-01T03:34:12Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Open-Set Semi-Supervised Object Detection [43.464223594166654]
近年,Semi-Supervised Object Detection (SSOD) の開発が進められている。
我々は、より実用的で難しい問題、OSSOD(Open-Set Semi-Supervised Object Detection)を考える。
提案フレームワークはセマンティック拡張問題に効果的に対処し,OSSODベンチマークにおける一貫した改善を示す。
論文 参考訳(メタデータ) (2022-08-29T17:04:30Z) - Occlusion-Robust Object Pose Estimation with Holistic Representation [42.27081423489484]
State-of-the-art(SOTA)オブジェクトのポーズ推定器は2段階のアプローチを取る。
我々は,新しいブロック・アンド・ブラックアウトバッチ拡張技術を開発した。
また,総合的なポーズ表現学習を促進するためのマルチ精度監視アーキテクチャも開発している。
論文 参考訳(メタデータ) (2021-10-22T08:00:26Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
具体的には、ラベルのない新しい未知のデータに基づくネットワークの一般化を促進するための、徹底的な摂動スキームを設計する。
我々のSESSは、50%のラベル付きデータを用いて、最先端の完全教師付き手法と比較して、競争性能を達成している。
論文 参考訳(メタデータ) (2019-12-26T08:48:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。