論文の概要: Scale-Equivariant UNet for Histopathology Image Segmentation
- arxiv url: http://arxiv.org/abs/2304.04595v1
- Date: Mon, 10 Apr 2023 14:03:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 14:50:49.094614
- Title: Scale-Equivariant UNet for Histopathology Image Segmentation
- Title(参考訳): 病理組織像分割のためのスケール同変型unet
- Authors: Yilong Yang, Srinandan Dasmahapatra, Sasan Mahmoodi
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は、特定のスケールでそのような画像で訓練されたが、異なるスケールのものに一般化することができない。
本稿では,スケール空間理論に基づく画像分割のためのスケール・エクイバティブUNet(SEUNet)を提案する。
- 参考スコア(独自算出の注目度): 1.213915839836187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Digital histopathology slides are scanned and viewed under different
magnifications and stored as images at different resolutions. Convolutional
Neural Networks (CNNs) trained on such images at a given scale fail to
generalise to those at different scales. This inability is often addressed by
augmenting training data with re-scaled images, allowing a model with
sufficient capacity to learn the requisite patterns. Alternatively, designing
CNN filters to be scale-equivariant frees up model capacity to learn
discriminative features. In this paper, we propose the Scale-Equivariant UNet
(SEUNet) for image segmentation by building on scale-space theory. The SEUNet
contains groups of filters that are linear combinations of Gaussian basis
filters, whose scale parameters are trainable but constrained to span disjoint
scales through the layers of the network. Extensive experiments on a nuclei
segmentation dataset and a tissue type segmentation dataset demonstrate that
our method outperforms other approaches, with much fewer trainable parameters.
- Abstract(参考訳): デジタル病理組織学のスライドは、異なる倍率でスキャンされ、異なる解像度で画像として保存される。
そのようなスケールでトレーニングされた畳み込みニューラルネットワーク(cnns)は、異なるスケールのニューラルネットワークに一般化することができない。
この障害は、しばしば、再スケールしたイメージでトレーニングデータを拡張することで対処され、十分な能力を持つモデルで必要なパターンを学ぶことができる。
あるいは、スケール同値なcnnフィルタを設計することで、モデルのキャパシティを解放し、識別的特徴を学ぶことができる。
本稿では,スケール空間理論に基づく画像セグメンテーションのためのSEUNet(Scale-Equivariant UNet)を提案する。
SEUNetには、ガウス基底フィルタの線形結合であるフィルタのグループが含まれており、スケールパラメータはトレーニング可能であるが、ネットワークの層を通して不整合スケールに分散するように制約されている。
核セグメンテーションデータセットと組織型セグメンテーションデータセットに関する広範囲な実験により,学習可能なパラメータをはるかに少なくして,他のアプローチよりも優れていることが証明された。
関連論文リスト
- Scale-Equivariant Deep Learning for 3D Data [44.52688267348063]
畳み込みニューラルネットワーク(CNN)は、画像の位置に関係なく物体を認識する。
本稿では,3次元データに対するスケール・等価な畳み込みネットワーク層を提案する。
本実験は,3次元医用画像解析の尺度等式化における提案手法の有効性を実証するものである。
論文 参考訳(メタデータ) (2023-04-12T13:56:12Z) - Rotation-Scale Equivariant Steerable Filters [1.213915839836187]
生検組織のデジタル組織像は、任意の向きと倍率で撮影でき、異なる解像度で保存できる。
本稿では、ステアブルフィルタとスケール空間理論を組み込んだ回転スケール可変フィルタ(RSESF)を提案する。
我々の手法は他の手法よりも優れており、トレーニング可能なパラメータは少なく、GPUリソースも少ない。
論文 参考訳(メタデータ) (2023-04-10T14:13:56Z) - Strong Baseline and Bag of Tricks for COVID-19 Detection of CT Scans [2.696776905220987]
従来のディープラーニングフレームワークは、CT画像のスライス数や解像度の変化によって互換性の問題に直面する。
この制限に対処するために,各CTデータセットに対して新しいスライス選択法を提案する。
上記の方法に加えて、様々な高性能分類モデルについて検討し、最終的には有望な結果を得る。
論文 参考訳(メタデータ) (2023-03-15T09:52:28Z) - Scale Attention for Learning Deep Face Representation: A Study Against
Visual Scale Variation [69.45176408639483]
我々はスケール空間理論に頼って凸層を再構築する。
我々はSCale AttentioN Conv Neural Network(textbfSCAN-CNN)という新しいスタイルを構築した。
単発方式として、推論はマルチショット融合よりも効率的である。
論文 参考訳(メタデータ) (2022-09-19T06:35:04Z) - Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training
of Image Segmentation Models [54.49581189337848]
本稿では,分類データセットに基づく画像分割モデルのエンドツーエンド事前学習を可能にする手法を提案する。
提案手法は重み付きセグメンテーション学習法を利用して,重み付きセグメンテーションネットワークを事前訓練する。
実験の結果,ImageNetにソースデータセットとしてPSSLを伴って提案されたエンドツーエンドの事前トレーニング戦略が,さまざまなセグメンテーションモデルの性能向上に成功していることがわかった。
論文 参考訳(メタデータ) (2022-07-04T13:02:32Z) - Omni-Seg+: A Scale-aware Dynamic Network for Pathological Image
Segmentation [13.182646724406291]
糸球体の断面領域は、管周囲の毛細血管の64倍の大きさである。
マルチオブジェクト(6つの組織型)とマルチスケール(5Xから40Xスケール)の画像セグメンテーションを実現する,スケール対応の動的ニューラルネットワークであるOmni-Seg+ネットワークを提案する。
論文 参考訳(メタデータ) (2022-06-27T21:09:55Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
空間変換器ネットワーク(STN)を利用することにより、ポーズとスケール不変の新たなCNNアーキテクチャを提案する。
私たちのアーキテクチャは、トレーニング中に一緒に見積もられる3つのシーケンシャルモジュールで構成されています。
腹部CTスキャナーを用いた腎および腎腫瘍の分節法について検討した。
論文 参考訳(メタデータ) (2021-07-06T14:50:03Z) - Scale-covariant and scale-invariant Gaussian derivative networks [0.0]
本稿では,大規模空間論と深層学習のハイブリッドアプローチとして,カスケード内のパラメータ化スケール空間演算を結合してディープラーニングアーキテクチャを構築する。
その結果,学習データに存在しない大規模パターンの分類に優れた性能が得られた。
論文 参考訳(メタデータ) (2020-11-30T13:15:10Z) - Learning to Learn Parameterized Classification Networks for Scalable
Input Images [76.44375136492827]
畳み込みニューラルネットワーク(CNN)は、入力解像度の変化に関して予測可能な認識動作を持たない。
我々はメタラーナーを用いて、様々な入力スケールのメインネットワークの畳み込み重みを生成する。
さらに、異なる入力解像度に基づいて、モデル予測よりもフライでの知識蒸留を利用する。
論文 参考訳(メタデータ) (2020-07-13T04:27:25Z) - Set Based Stochastic Subsampling [85.5331107565578]
本稿では,2段階間ニューラルサブサンプリングモデルを提案する。
画像分類,画像再構成,機能再構築,少数ショット分類など,様々なタスクにおいて,低いサブサンプリング率で関連ベースラインを上回っていることを示す。
論文 参考訳(メタデータ) (2020-06-25T07:36:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。