論文の概要: Strong Baseline and Bag of Tricks for COVID-19 Detection of CT Scans
- arxiv url: http://arxiv.org/abs/2303.08490v1
- Date: Wed, 15 Mar 2023 09:52:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-16 14:08:08.437279
- Title: Strong Baseline and Bag of Tricks for COVID-19 Detection of CT Scans
- Title(参考訳): 新型コロナウイルスによるCTスキャン検出のためのトリックの強力なベースラインとバグ
- Authors: Chih-Chung Hsu, Chih-Yu Jian, Chia-Ming Lee, Chi-Han Tsai, and
Sheng-Chieh Dai
- Abstract要約: 従来のディープラーニングフレームワークは、CT画像のスライス数や解像度の変化によって互換性の問題に直面する。
この制限に対処するために,各CTデータセットに対して新しいスライス選択法を提案する。
上記の方法に加えて、様々な高性能分類モデルについて検討し、最終的には有望な結果を得る。
- 参考スコア(独自算出の注目度): 2.696776905220987
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper investigates the application of deep learning models for lung
Computed Tomography (CT) image analysis. Traditional deep learning frameworks
encounter compatibility issues due to variations in slice numbers and
resolutions in CT images, which stem from the use of different machines.
Commonly, individual slices are predicted and subsequently merged to obtain the
final result; however, this approach lacks slice-wise feature learning and
consequently results in decreased performance. We propose a novel slice
selection method for each CT dataset to address this limitation, effectively
filtering out uncertain slices and enhancing the model's performance.
Furthermore, we introduce a spatial-slice feature learning (SSFL)
technique\cite{hsu2022} that employs a conventional and efficient backbone
model for slice feature training, followed by extracting one-dimensional data
from the trained model for COVID and non-COVID classification using a dedicated
classification model. Leveraging these experimental steps, we integrate
one-dimensional features with multiple slices for channel merging and employ a
2D convolutional neural network (CNN) model for classification. In addition to
the aforementioned methods, we explore various high-performance classification
models, ultimately achieving promising results.
- Abstract(参考訳): 本稿では,肺CT画像解析におけるディープラーニングモデルの適用について検討する。
従来のディープラーニングフレームワークは、スライス数の変化とCT画像の解像度によって互換性の問題に直面する。
一般に、個々のスライスを予測してマージして最終的な結果を得るが、この方法はスライス的な特徴学習に欠け、結果として性能が低下する。
そこで本研究では,ctデータセット毎に不確定なスライスを効果的に除去し,モデルの性能を向上させる新しいスライス選択法を提案する。
さらに、スライス特徴訓練に従来的で効率的なバックボーンモデルを用いた空間スライス特徴学習(SSFL)手法を導入するとともに、専用分類モデルを用いて、訓練された新型コロナウイルスおよび非新型コロナウイルスの分類モデルから1次元データを抽出する。
これらの実験ステップを活用し、チャネルマージのための1次元特徴と複数のスライスを統合し、分類に2次元畳み込みニューラルネットワーク(cnn)モデルを用いる。
上記の手法に加えて,様々な高性能分類モデルを検討し,最終的に有望な結果を得る。
関連論文リスト
- High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
基礎モデルに基づく数ショットセグメンテーション(FSS)フレームワークを開発した。
具体的には、基礎モデルから暗黙的な知識を抽出し、粗い対応を構築するための簡単なアプローチを提案する。
2つの広く使われているデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2024-09-10T08:04:11Z) - Simple 2D Convolutional Neural Network-based Approach for COVID-19 Detection [8.215897530386343]
本研究では,肺CT画像解析におけるディープラーニング技術の利用について検討した。
我々は,CTスキャンに適した高度な空間スライス特徴学習(SSFL++)フレームワークを提案する。
本研究の目的は,CTスキャン全体のアウト・オブ・ディストリビューション(OOD)データをフィルタリングし,データ冗長性を70%削減して解析に不可欠な空間スライス特徴を選択することである。
論文 参考訳(メタデータ) (2024-03-17T14:34:51Z) - Scale-Equivariant UNet for Histopathology Image Segmentation [1.213915839836187]
畳み込みニューラルネットワーク(CNN)は、特定のスケールでそのような画像で訓練されたが、異なるスケールのものに一般化することができない。
本稿では,スケール空間理論に基づく画像分割のためのスケール・エクイバティブUNet(SEUNet)を提案する。
論文 参考訳(メタデータ) (2023-04-10T14:03:08Z) - Spatiotemporal Feature Learning Based on Two-Step LSTM and Transformer
for CT Scans [2.3682456328966115]
我々は、新型コロナウイルスの症状分類を徹底的に行うための、新しい、効果的、2段階のアプローチを提案する。
まず,従来のバックボーンネットワークにより,CTスキャンにおける各スライスの意味的特徴埋め込みを抽出する。
そこで我々は,時間的特徴学習を扱うために,LSTMとTransformerベースのサブネットワークを提案する。
論文 参考訳(メタデータ) (2022-07-04T16:59:05Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
カノニカル相関解析 (CCA) は, 2つのビューの特徴抽出手法である。
本稿では,入力依存の正準相関モデルをトレーニングするための新しい動的スケーリング手法を提案する。
論文 参考訳(メタデータ) (2022-03-23T12:52:49Z) - Deep Learning Based Automated COVID-19 Classification from Computed
Tomography Images [0.0]
本稿では,画像分類のための畳み込みニューラルネットワーク(CNN)モデルを提案する。
本研究では,2次元CNNモデルを用いて2次元CTスキャン画像のスライスを簡易に分類する手法を提案する。
アーキテクチャの単純さにもかかわらず、提案モデルでは、同じ画像のデータセット上で、最先端技術を上回る定量的結果が得られた。
論文 参考訳(メタデータ) (2021-11-22T13:35:10Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - An End-to-End Breast Tumour Classification Model Using Context-Based
Patch Modelling- A BiLSTM Approach for Image Classification [19.594639581421422]
我々は, この関係を, 特定の腫瘍領域から抽出したパッチ間の特徴に基づく相関関係と統合しようと試みている。
我々は、顕微鏡画像とWSI腫瘍領域の2つのデータセットでモデルをトレーニングし、テストした。
CNN機能付きBiLSTMは、パッチをエンドツーエンドの画像分類ネットワークにモデル化する上で、はるかに優れた性能を示した。
論文 参考訳(メタデータ) (2021-06-05T10:43:58Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
本稿では,前立腺領域を高速に局在させる第1段階と,前立腺領域を正確に区分する第2段階の2段階のフレームワークを提案する。
マルチタスクネットワークにおけるボクセルワイドサンプリングによる新しいオンラインメトリック学習モジュールを提案する。
本手法は,従来のクロスエントロピー学習法やDice損失学習法と比較して,より代表的なボクセルレベルの特徴を効果的に学習することができる。
論文 参考訳(メタデータ) (2020-05-15T10:37:02Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。