論文の概要: Automated Reading Passage Generation with OpenAI's Large Language Model
- arxiv url: http://arxiv.org/abs/2304.04616v1
- Date: Mon, 10 Apr 2023 14:30:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 14:40:52.067087
- Title: Automated Reading Passage Generation with OpenAI's Large Language Model
- Title(参考訳): OpenAIの大規模言語モデルによる自動読み出しパス生成
- Authors: Ummugul Bezirhan, Matthias von Davier
- Abstract要約: 本稿では,OpenAI の最新のトランスフォーマーベース言語モデル GPT-3 を用いて読み出しパスを生成する。
既存の読み出しパスは、AI生成したテキストが第4グレードの読み出しパスに類似した内容と構造を持つことを保証するために、慎重に設計されたプロンプトに使用された。
AI生成された全ての通路は、その一貫性、第4学年への適切性、可読性に応じて、人間の裁判官によって評価された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The widespread usage of computer-based assessments and individualized
learning platforms has resulted in an increased demand for the rapid production
of high-quality items. Automated item generation (AIG), the process of using
item models to generate new items with the help of computer technology, was
proposed to reduce reliance on human subject experts at each step of the
process. AIG has been used in test development for some time. Still, the use of
machine learning algorithms has introduced the potential to improve the
efficiency and effectiveness of the process greatly. The approach presented in
this paper utilizes OpenAI's latest transformer-based language model, GPT-3, to
generate reading passages. Existing reading passages were used in carefully
engineered prompts to ensure the AI-generated text has similar content and
structure to a fourth-grade reading passage. For each prompt, we generated
multiple passages, the final passage was selected according to the Lexile score
agreement with the original passage. In the final round, the selected passage
went through a simple revision by a human editor to ensure the text was free of
any grammatical and factual errors. All AI-generated passages, along with
original passages were evaluated by human judges according to their coherence,
appropriateness to fourth graders, and readability.
- Abstract(参考訳): コンピュータベースの評価や個別学習プラットフォームの普及により、高品質なアイテムの迅速な生産への需要が高まっている。
自動アイテム生成(AIG)は、コンピュータ技術の助けを借りてアイテムモデルを用いて新しいアイテムを生成するプロセスであり、プロセスの各ステップにおける人体の専門家への依存を減らすことを目的としている。
AIGはしばらく前からテスト開発に使われてきた。
それでも、機械学習アルゴリズムの使用は、プロセスの効率と効率を大幅に改善する可能性を秘めている。
本稿では,OpenAIの最新のトランスフォーマーベース言語モデルであるGPT-3を用いて読み出しパスを生成する。
既存の読み出しパスは、AI生成したテキストが第4グレードの読み出しパスに類似した内容と構造を持つことを保証するために、慎重に設計されたプロンプトに使用された。
各プロンプトに対して複数のパスを生成し,レキシルスコア合意に従って最終パスが選択された。
最終ラウンドでは、選択された文は、人間の編集者による簡単な改訂を経て、テキストに文法的および事実的誤りがないことを保証した。
AI生成された全ての通路は、その一貫性、第4学年への適切性、可読性に応じて、人間の裁判官によって評価された。
関連論文リスト
- DeTeCtive: Detecting AI-generated Text via Multi-Level Contrastive Learning [24.99797253885887]
このタスクを達成するための鍵は、異なる著者のスタイルを区別することにある、と我々は主張する。
DeTeCtiveは,マルチタスクの補助的,マルチレベルのコントラスト学習フレームワークである。
我々の手法はテキストエンコーダと互換性がある。
論文 参考訳(メタデータ) (2024-10-28T12:34:49Z) - Detecting Machine-Generated Long-Form Content with Latent-Space Variables [54.07946647012579]
既存のゼロショット検出器は主に、現実世界のドメインシフトに弱いトークンレベルの分布に焦点を当てている。
本稿では,イベント遷移などの抽象的要素を機械対人文検出の鍵となる要因として組み込んだ,より堅牢な手法を提案する。
論文 参考訳(メタデータ) (2024-10-04T18:42:09Z) - Is Contrasting All You Need? Contrastive Learning for the Detection and Attribution of AI-generated Text [4.902089836908786]
WhosAIは、与えられた入力テキストが人間かAIによって生成されたかを予測するために設計された3重ネットワークコントラスト学習フレームワークである。
提案するフレームワークは,チューリングテストとオーサリングの両タスクにおいて,優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2024-07-12T15:44:56Z) - Enhancing Text Authenticity: A Novel Hybrid Approach for AI-Generated Text Detection [8.149808049643344]
本稿では,TF-IDF技術と高度な機械学習モデルを組み合わせた新しいハイブリッド手法を提案する。
提案手法は既存手法と比較して優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-06-01T10:21:54Z) - Beyond Turing: A Comparative Analysis of Approaches for Detecting Machine-Generated Text [1.919654267936118]
従来の浅層学習,言語モデル(LM)微調整,多言語モデル微調整の評価を行った。
結果は、メソッド間でのパフォーマンスにかなりの違いが示される。
この研究は、堅牢で差別性の高いモデルを作成することを目的とした将来の研究の道を開くものである。
論文 参考訳(メタデータ) (2023-11-21T06:23:38Z) - TEMPERA: Test-Time Prompting via Reinforcement Learning [57.48657629588436]
強化学習(TEMPERA)を用いたテスト時間プロンプト編集を提案する。
従来のプロンプト生成手法とは対照的に、TEMPERAは事前知識を効率的に活用することができる。
本手法は従来の微調整法と比較して試料効率の平均改善率を5.33倍に向上させる。
論文 参考訳(メタデータ) (2022-11-21T22:38:20Z) - Contextual-Utterance Training for Automatic Speech Recognition [65.4571135368178]
本稿では,過去と将来の文脈発話を利用した文脈発話訓練手法を提案する。
また,自動音声認識(ASR)システムをストリーミングするための2モード文脈発話訓練手法を提案する。
提案手法により、WERと平均最後のトークン放出遅延を6%以上、40ms以上削減できる。
論文 参考訳(メタデータ) (2022-10-27T08:10:44Z) - Toward Educator-focused Automated Scoring Systems for Reading and
Writing [0.0]
本稿では,データとラベルの可用性,信頼性と拡張性,ドメインスコアリング,プロンプトとソースの多様性,伝達学習といった課題に対処する。
モデルトレーニングコストを増大させることなく、エッセイの長さを重要な特徴として保持する技術を採用している。
論文 参考訳(メタデータ) (2021-12-22T15:44:30Z) - Lexically Aware Semi-Supervised Learning for OCR Post-Correction [90.54336622024299]
世界中の多くの言語における既存の言語データの多くは、非デジタル化された書籍や文書に閉じ込められている。
従来の研究は、あまり良くない言語を認識するためのニューラル・ポスト・コレクション法の有用性を実証してきた。
そこで本研究では,生画像を利用した半教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-11-04T04:39:02Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
本稿では,階層型双方向自己注意ネットワークフレームワーク(HabNet)を提案する。
具体的には、文エンコーダ(レベル1)、レビュー内エンコーダ(レベル2)、レビュー間エンコーダ(レベル3)の3つのレベルで、論文レビューの階層構造を利用する。
我々は、最終的な受理決定を行う上で有用な予測者を特定することができ、また、数値的なレビュー評価とレビュアーが伝えるテキストの感情の不整合を発見するのに役立てることができる。
論文 参考訳(メタデータ) (2020-11-02T08:07:50Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。