論文の概要: Inductive biases in deep learning models for weather prediction
- arxiv url: http://arxiv.org/abs/2304.04664v2
- Date: Tue, 30 Apr 2024 14:05:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 20:17:07.629306
- Title: Inductive biases in deep learning models for weather prediction
- Title(参考訳): 気象予測のためのディープラーニングモデルにおける誘導バイアス
- Authors: Jannik Thuemmel, Matthias Karlbauer, Sebastian Otte, Christiane Zarfl, Georg Martius, Nicole Ludwig, Thomas Scholten, Ulrich Friedrich, Volker Wulfmeyer, Bedartha Goswami, Martin V. Butz,
- Abstract要約: 我々は、最先端のディープラーニングに基づく天気予報モデルの誘導バイアスをレビューし分析する。
我々は、最も重要な帰納バイアスを特定し、より効率的で確率的なDLWPモデルへの潜在的な道のりを明らかにする。
- 参考スコア(独自算出の注目度): 17.061163980363492
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has gained immense popularity in the Earth sciences as it enables us to formulate purely data-driven models of complex Earth system processes. Deep learning-based weather prediction (DLWP) models have made significant progress in the last few years, achieving forecast skills comparable to established numerical weather prediction models with comparatively lesser computational costs. In order to train accurate, reliable, and tractable DLWP models with several millions of parameters, the model design needs to incorporate suitable inductive biases that encode structural assumptions about the data and the modelled processes. When chosen appropriately, these biases enable faster learning and better generalisation to unseen data. Although inductive biases play a crucial role in successful DLWP models, they are often not stated explicitly and their contribution to model performance remains unclear. Here, we review and analyse the inductive biases of state-of-the-art DLWP models with respect to five key design elements: data selection, learning objective, loss function, architecture, and optimisation method. We identify the most important inductive biases and highlight potential avenues towards more efficient and probabilistic DLWP models.
- Abstract(参考訳): 深層学習は、複雑な地球系のプロセスの純粋にデータ駆動型モデルを定式化できるため、地球科学において大きな人気を集めている。
深層学習に基づく天気予報モデル(DLWP)はここ数年で大きな進歩を遂げており、計算コストが比較的少ない既存の数値天気予報モデルに匹敵する予測スキルを達成している。
数百万のパラメータで正確で信頼性があり、抽出可能なDLWPモデルをトレーニングするために、モデル設計は、データとモデル化プロセスに関する構造的仮定を符号化する適切な帰納的バイアスを組み込む必要がある。
適切に選択すれば、これらのバイアスはより高速な学習と、見つからないデータへのより良い一般化を可能にします。
誘導バイアスはDLWPモデルの成功において重要な役割を担っているが、明確には述べられておらず、モデル性能への貢献はいまだ不明である。
本稿では、データ選択、学習目標、損失関数、アーキテクチャ、最適化方法の5つの重要な設計要素について、最先端DLWPモデルの帰納的バイアスをレビューし分析する。
我々は、最も重要な帰納バイアスを特定し、より効率的で確率的なDLWPモデルへの潜在的な道のりを明らかにする。
関連論文リスト
- A Data-Centric Perspective on Evaluating Machine Learning Models for Tabular Data [9.57464542357693]
実世界のモデリングパイプラインは、しばしばデータセット固有の前処理と特徴工学を必要とするため、モデル中心の評価は偏りがあることを実証する。
Kaggleコンペティションから10の関連するデータセットを選択し、データセット毎に専門家レベルの前処理パイプラインを実装します。
データセット固有の機能エンジニアリングの後、モデルランキングは大幅に変化し、性能差が減少し、モデル選択の重要性が低下する。
論文 参考訳(メタデータ) (2024-07-02T09:54:39Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - Analyzing and Exploring Training Recipes for Large-Scale Transformer-Based Weather Prediction [1.3194391758295114]
比較的オフ・ザ・シェルフアーキテクチャ、簡単な訓練手順、適度な計算予算でも高い予測能力が得られることを示す。
具体的には、ERA5データに基づいて最小修正SwinV2変換器をトレーニングし、IFSと比較すると優れた予測技術が得られることを確かめる。
論文 参考訳(メタデータ) (2024-04-30T15:30:14Z) - Addressing Bias Through Ensemble Learning and Regularized Fine-Tuning [0.2812395851874055]
本稿では,AIモデルのバイアスを取り除くために,複数の手法を用いた包括的アプローチを提案する。
我々は、データ分割、局所訓練、正規化ファインチューニングを通じて、事前訓練されたモデルのカウンターバイアスで複数のモデルを訓練する。
我々は、単一のバイアスのないニューラルネットワークをもたらす知識蒸留を用いて、ソリューションを結論付けている。
論文 参考訳(メタデータ) (2024-02-01T09:24:36Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
本稿では,物理システムのモデリング向上を目的とした包括的データ駆動フレームワークを提案する。
実証的応用として,電顕的電気泳動沈着(EPD)のモデル化を追求する。
論文 参考訳(メタデータ) (2024-01-16T14:58:21Z) - Online learning techniques for prediction of temporal tabular datasets
with regime changes [0.0]
時間パネルデータセットの予測をランキングするモジュール型機械学習パイプラインを提案する。
パイプラインのモジュラリティにより、GBDT(Gradient Boosting Decision Tree)やニューラルネットワークなど、さまざまなモデルの使用が可能になる。
モデルの再トレーニングを必要としないオンライン学習技術は、予測後の結果を高めるために使用することができる。
論文 参考訳(メタデータ) (2022-12-30T17:19:00Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
大量のトレーニングデータが、最先端のNLPモデルの高性能化の大きな理由の1つである。
トレーニングデータがどのように予測に影響を及ぼすかを記述するための言語を,因果的フレームワークを通じて提供する。
我々のフレームワークは、高価なモデルの再訓練の必要性を回避し、観測データのみに基づいて因果効果を推定することができる。
論文 参考訳(メタデータ) (2022-07-28T17:36:24Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z) - Towards Interpretable Deep Learning Models for Knowledge Tracing [62.75876617721375]
本稿では,深層学習に基づく知識追跡(DLKT)モデルの解釈可能性問題に対処するポストホック手法を提案する。
具体的には、RNNに基づくDLKTモデルを解釈するために、レイヤワイズ関連伝搬法(LRP)を適用することに焦点をあてる。
実験結果から,DLKTモデルの予測をLRP法で解釈できることを示す。
論文 参考訳(メタデータ) (2020-05-13T04:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。