論文の概要: Controllable Motion Synthesis and Reconstruction with Autoregressive
Diffusion Models
- arxiv url: http://arxiv.org/abs/2304.04681v1
- Date: Mon, 3 Apr 2023 08:17:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-16 22:24:22.335335
- Title: Controllable Motion Synthesis and Reconstruction with Autoregressive
Diffusion Models
- Title(参考訳): 自己回帰拡散モデルによる制御可能な運動合成と再構成
- Authors: Wenjie Yin, Ruibo Tu, Hang Yin, Danica Kragic, Hedvig Kjellstr\"om,
M{\aa}rten Bj\"orkman
- Abstract要約: MoDiff(モディフ)は、他のモードの制御コンテキストに条件付けられた動き列上の自己回帰的確率拡散モデルである。
本モデルでは、モーダルトランスフォーマーエンコーダとトランスフォーマーベースのデコーダを統合し、動作の時間的相関と制御のモダリティを捉えるのに有効である。
- 参考スコア(独自算出の注目度): 18.50942770933098
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data-driven and controllable human motion synthesis and prediction are active
research areas with various applications in interactive media and social
robotics. Challenges remain in these fields for generating diverse motions
given past observations and dealing with imperfect poses. This paper introduces
MoDiff, an autoregressive probabilistic diffusion model over motion sequences
conditioned on control contexts of other modalities. Our model integrates a
cross-modal Transformer encoder and a Transformer-based decoder, which are
found effective in capturing temporal correlations in motion and control
modalities. We also introduce a new data dropout method based on the diffusion
forward process to provide richer data representations and robust generation.
We demonstrate the superior performance of MoDiff in controllable motion
synthesis for locomotion with respect to two baselines and show the benefits of
diffusion data dropout for robust synthesis and reconstruction of high-fidelity
motion close to recorded data.
- Abstract(参考訳): データ駆動および制御可能な人間のモーション合成と予測は、インタラクティブメディアとソーシャルロボティクスにおける様々な応用を含む活発な研究分野である。
これらの分野には、過去の観察や不完全なポーズを扱う様々な動きを生み出すための課題が残っている。
本稿では、他のモードの制御コンテキストに条件付された動き列上の自己回帰的確率拡散モデルであるMoDiffを紹介する。
本モデルでは、モーダルトランスフォーマーエンコーダとトランスフォーマーベースのデコーダを統合し、運動と制御の時間的相関を捉えるのに有効である。
また,よりリッチなデータ表現とロバストな生成を実現するために,拡散転送プロセスに基づく新しいデータドロップアウト手法を導入する。
記録データに近い高忠実度動きの頑健な合成と再構成のための拡散データドロップアウトの利点を示すため, 2つのベースラインに対する移動の制御可能な動作合成におけるMoDiffの優れた性能を示す。
関連論文リスト
- Motion Flow Matching for Human Motion Synthesis and Editing [75.13665467944314]
本研究では,効率的なサンプリングと効率性を備えた人体運動生成のための新しい生成モデルであるemphMotion Flow Matchingを提案する。
提案手法は, 従来の拡散モデルにおいて, サンプリングの複雑さを1000ステップから10ステップに減らし, テキスト・ツー・モーション・ジェネレーション・ベンチマークやアクション・ツー・モーション・ジェネレーション・ベンチマークで同等の性能を実現する。
論文 参考訳(メタデータ) (2023-12-14T12:57:35Z) - TrackDiffusion: Tracklet-Conditioned Video Generation via Diffusion Models [75.20168902300166]
微粒な軌跡条件の運動制御が可能な新しい映像生成フレームワークであるTrackDiffusionを提案する。
TrackDiffusionの重要なコンポーネントは、複数のオブジェクトのフレーム間の一貫性を明確に保証するインスタンスエンハンサーである。
TrackDiffusionによって生成されたビデオシーケンスは、視覚知覚モデルのトレーニングデータとして使用できる。
論文 参考訳(メタデータ) (2023-12-01T15:24:38Z) - TransFusion: A Practical and Effective Transformer-based Diffusion Model
for 3D Human Motion Prediction [1.8923948104852863]
本研究では,3次元動作予測のための革新的で実用的な拡散モデルであるTransFusionを提案する。
我々のモデルは、浅い層と深い層の間の長いスキップ接続を持つバックボーンとしてTransformerを活用している。
クロスアテンションや適応層正規化のような余分なモジュールを利用する従来の拡散モデルとは対照的に、条件を含む全ての入力をトークンとして扱い、より軽量なモデルを作成する。
論文 参考訳(メタデータ) (2023-07-30T01:52:07Z) - Interactive Character Control with Auto-Regressive Motion Diffusion Models [18.727066177880708]
リアルタイム動作合成のためのA-MDM(Auto-Regressive Motion Diffusion Model)を提案する。
我々の条件拡散モデルは初期ポーズを入力とし、前者のフレームに条件付けられた連続した動きフレームを自動回帰的に生成する。
本稿では,タスク指向サンプリング,インペインティング,階層的強化学習など,対話型制御をA-MDMに組み込む一連の手法を紹介する。
論文 参考訳(メタデータ) (2023-06-01T07:48:34Z) - Motion-Conditioned Diffusion Model for Controllable Video Synthesis [75.367816656045]
本稿では,開始画像フレームと一組のストロークから映像を生成する条件拡散モデルであるMCDiffを紹介する。
MCDiffはストローク誘導制御可能なビデオ合成における最先端の視覚的品質を実現する。
論文 参考訳(メタデータ) (2023-04-27T17:59:32Z) - ReMoDiffuse: Retrieval-Augmented Motion Diffusion Model [33.64263969970544]
3Dのモーション生成はクリエイティブ産業にとって不可欠だ。
近年の進歩は、テキスト駆動モーション生成のためのドメイン知識を持つ生成モデルに依存している。
本稿では拡散モデルに基づく動き生成フレームワークReMoDiffuseを提案する。
論文 参考訳(メタデータ) (2023-04-03T16:29:00Z) - Modiff: Action-Conditioned 3D Motion Generation with Denoising Diffusion
Probabilistic Models [58.357180353368896]
本稿では,現実的で多様な3D骨格に基づく運動生成問題に対処するために,拡散確率モデル(DDPM)の利点を生かした条件付きパラダイムを提案する。
我々はDDPMを用いてカテゴリ的動作で条件付けられた動作列の可変数を合成する先駆的な試みである。
論文 参考訳(メタデータ) (2023-01-10T13:15:42Z) - MoFusion: A Framework for Denoising-Diffusion-based Motion Synthesis [73.52948992990191]
MoFusionは、高品質な条件付き人間のモーション合成のための新しいノイズ拡散ベースのフレームワークである。
本研究では,運動拡散フレームワーク内での運動可視性に対して,よく知られたキネマティック損失を導入する方法を提案する。
文献の確立されたベンチマークにおけるMoFusionの有効性を,技術の現状と比較した。
論文 参考訳(メタデータ) (2022-12-08T18:59:48Z) - Executing your Commands via Motion Diffusion in Latent Space [51.64652463205012]
本研究では,動作遅延に基づく拡散モデル(MLD)を提案し,条件付き入力に対応する鮮明な動き列を生成する。
我々のMDDは、広範囲な人体運動生成タスクにおいて、最先端の手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-12-08T03:07:00Z) - Graph-based Normalizing Flow for Human Motion Generation and
Reconstruction [20.454140530081183]
過去の情報と制御信号に基づく長地平線運動系列を合成・再構築する確率生成モデルを提案する。
足踏み解析と骨長解析を併用したモーションキャプチャデータセットを用いたモデル評価を行った。
論文 参考訳(メタデータ) (2021-04-07T09:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。