論文の概要: Ambiguous Medical Image Segmentation using Diffusion Models
- arxiv url: http://arxiv.org/abs/2304.04745v1
- Date: Mon, 10 Apr 2023 17:58:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 14:04:48.786372
- Title: Ambiguous Medical Image Segmentation using Diffusion Models
- Title(参考訳): 拡散モデルを用いた曖昧な医用画像分割
- Authors: Aimon Rahman and Jeya Maria Jose Valanarasu and Ilker Hacihaliloglu
and Vishal M Patel
- Abstract要約: 我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 60.378180265885945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collective insights from a group of experts have always proven to outperform
an individual's best diagnostic for clinical tasks. For the task of medical
image segmentation, existing research on AI-based alternatives focuses more on
developing models that can imitate the best individual rather than harnessing
the power of expert groups. In this paper, we introduce a single diffusion
model-based approach that produces multiple plausible outputs by learning a
distribution over group insights. Our proposed model generates a distribution
of segmentation masks by leveraging the inherent stochastic sampling process of
diffusion using only minimal additional learning. We demonstrate on three
different medical image modalities- CT, ultrasound, and MRI that our model is
capable of producing several possible variants while capturing the frequencies
of their occurrences. Comprehensive results show that our proposed approach
outperforms existing state-of-the-art ambiguous segmentation networks in terms
of accuracy while preserving naturally occurring variation. We also propose a
new metric to evaluate the diversity as well as the accuracy of segmentation
predictions that aligns with the interest of clinical practice of collective
insights.
- Abstract(参考訳): 専門家のグループからの集団的洞察は、臨床業務における個人の最高の診断よりも優れていることが常に証明されている。
医用画像セグメンテーションのタスクでは、AIベースの代替手段に関する既存の研究は、専門家グループの力を利用するのではなく、最高の個人を模倣できるモデルの開発に焦点を当てている。
本稿では,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは, 最小付加学習のみを用いて拡散の固有確率的サンプリング過程を活用し, セグメンテーションマスクの分布を生成する。
今回我々は,ct,超音波,mriの3種類の医用画像モダリティを用いて,その発生頻度を捉えながら,複数の変異を生成できることを実証した。
総合的な結果から,提案手法は,自然発生の変動を保ちながら,既存の曖昧なセグメント化ネットワークよりも精度が高いことがわかった。
また, 集団的洞察の臨床的実践の関心と合致するセグメント化予測の精度だけでなく, 多様性を評価するための新しい指標を提案する。
関連論文リスト
- Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
セマンティックはインコンテクストタスクへと発展し、一般化的セグメンテーションモデルを評価する上で重要な要素となった。
我々の最初の焦点は、クエリイメージとサポートイメージの相互作用を容易にする方法を理解することであり、その結果、自己注意フレームワーク内のKV融合法が提案される。
そこで我々はDiffewSというシンプルで効果的なフレームワークを構築し,従来の潜在拡散モデルの生成フレームワークを最大限に保持する。
論文 参考訳(メタデータ) (2024-10-03T10:33:49Z) - DiffSeg: A Segmentation Model for Skin Lesions Based on Diffusion Difference [2.9082809324784082]
拡散差に基づく皮膚病変のセグメンテーションモデルDiffSegを紹介する。
マルチアウトプット能力は医師のアノテーションの振る舞いを模倣し、セグメンテーション結果の一貫性とあいまいさの可視化を容易にする。
我々は,ISIC 2018 ChallengeデータセットにおけるDiffSegの有効性を示す。
論文 参考訳(メタデータ) (2024-04-25T09:57:52Z) - Annotator Consensus Prediction for Medical Image Segmentation with
Diffusion Models [70.3497683558609]
医療画像のセグメンテーションにおける大きな課題は、複数の専門家が提供したアノテーションにおける、サーバ間の大きなばらつきである。
拡散モデルを用いたマルチエキスパート予測のための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-15T10:01:05Z) - BerDiff: Conditional Bernoulli Diffusion Model for Medical Image
Segmentation [19.036821997968552]
医用画像分割のための条件付きベルヌーイ拡散モデル(BerDiff)を提案する。
我々のBerDiffは、最近発表された最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2023-04-10T07:21:38Z) - Diff-UNet: A Diffusion Embedded Network for Volumetric Segmentation [41.608617301275935]
医療用ボリュームセグメンテーションのための新しいエンドツーエンドフレームワークDiff-UNetを提案する。
提案手法では,拡散モデルを標準U字型アーキテクチャに統合し,入力ボリュームから意味情報を効率的に抽出する。
われわれは,MRI,肝腫瘍,多臓器CTの3種類の脳腫瘍について検討した。
論文 参考訳(メタデータ) (2023-03-18T04:06:18Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Diversity-Promoting Ensemble for Medical Image Segmentation [25.089517950882527]
医用画像セグメンテーションのための異なるアーキテクチャのアンサンブルを生成する戦略を提案する。
多様性を促進するために,Diceスコアの低いモデルを選択する。
実験の結果,DiPEは個々のモデルと,上位スコアモデルの選択に基づくアンサンブル生成戦略に勝っていることがわかった。
論文 参考訳(メタデータ) (2022-10-22T08:47:25Z) - Multi-Domain Balanced Sampling Improves Out-of-Distribution
Generalization of Chest X-ray Pathology Prediction Models [67.2867506736665]
そこで本研究では, 簡単なバッチサンプリング手法を用いた胸部X線像の分布外一般化法を提案する。
複数のトレーニングデータセット間のバランスの取れたサンプリングは、バランスを取らずにトレーニングされたベースラインモデルよりもパフォーマンスが向上する。
論文 参考訳(メタデータ) (2021-12-27T15:28:01Z) - Orthogonal Ensemble Networks for Biomedical Image Segmentation [10.011414604407681]
モデル多様性を明示する新しいフレームワークであるOrthogonal Ensemble Networks (OEN)を紹介する。
提案手法を2つの課題脳病変セグメンテーションタスクでベンチマークする。
実験結果から,本手法はより頑健でよく校正されたアンサンブルモデルを生成することが示された。
論文 参考訳(メタデータ) (2021-05-22T23:44:55Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
ドメイン適応を容易にするデータ拡張手法を提案する。
逆生成したサンプルはドメイン適応時に使用される。
その結果,本手法の有効性とタスクの一般性が確認された。
論文 参考訳(メタデータ) (2021-01-13T03:20:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。