論文の概要: Stochastic Domain Wall-Magnetic Tunnel Junction Artificial Neurons for
Noise-Resilient Spiking Neural Networks
- arxiv url: http://arxiv.org/abs/2304.04794v1
- Date: Mon, 10 Apr 2023 18:00:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 17:13:10.748606
- Title: Stochastic Domain Wall-Magnetic Tunnel Junction Artificial Neurons for
Noise-Resilient Spiking Neural Networks
- Title(参考訳): 雑音耐性スパイクニューラルネットワークのための確率領域壁磁気トンネル接合人工ニューロン
- Authors: Thomas Leonard, Samuel Liu, Harrison Jin, and Jean Anne C. Incorvia
- Abstract要約: 本稿では,電圧依存性の確率発火を伴うDW-MTJニューロンについて述べる。
トレーニング中の検証精度は、理想的な統合およびファイアデバイスに匹敵することを示した。
本研究は、DW-MTJデバイスを用いて、エッジ上のニューロモルフィックコンピューティングに適した耐雑音性ネットワークを構築することができることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The spatiotemporal nature of neuronal behavior in spiking neural networks
(SNNs) make SNNs promising for edge applications that require high energy
efficiency. To realize SNNs in hardware, spintronic neuron implementations can
bring advantages of scalability and energy efficiency. Domain wall (DW) based
magnetic tunnel junction (MTJ) devices are well suited for probabilistic neural
networks given their intrinsic integrate-and-fire behavior with tunable
stochasticity. Here, we present a scaled DW-MTJ neuron with voltage-dependent
firing probability. The measured behavior was used to simulate a SNN that
attains accuracy during learning compared to an equivalent, but more
complicated, multi-weight (MW) DW-MTJ device. The validation accuracy during
training was also shown to be comparable to an ideal leaky integrate and fire
(LIF) device. However, during inference, the binary DW-MTJ neuron outperformed
the other devices after gaussian noise was introduced to the Fashion-MNIST
classification task. This work shows that DW-MTJ devices can be used to
construct noise-resilient networks suitable for neuromorphic computing on the
edge.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)における神経行動の時空間的性質により、SNNは高エネルギー効率を必要とするエッジアプリケーションに期待できる。
ハードウェアでSNNを実現するために、スピントロニックニューロンの実装はスケーラビリティとエネルギー効率の利点をもたらす。
磁壁 (DW) ベースの磁気トンネル接合 (MTJ) デバイスは, その内在的な統合と燃焼の挙動を調節可能な確率性で考慮すれば, 確率的ニューラルネットワークに適している。
本稿では,電圧依存的な発火確率を持つスケールドdw-mtjニューロンを提案する。
測定された動作は、学習中に同等だがより複雑でマルチウェイト(mw)のdw-mtjデバイスに比べて精度が向上するsnをシミュレートするために使用された。
トレーニング中の検証精度は、理想的なリークインテリジェンスとファイア(LIF)デバイスに匹敵することを示した。
しかし,2次DW-MTJニューロンはFashion-MNIST分類タスクにガウスノイズを導入した後,他のデバイスよりも優れていた。
本研究は、DW-MTJデバイスを用いて、エッジ上のニューロモルフィックコンピューティングに適した耐雑音性ネットワークを構築することができることを示す。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
我々はこれらのシナプス機能を本質的にエミュレートするSrTiO3に基づく膜状ナノデバイスを実証する。
これらのメムリスタは、安定かつエネルギー効率の良い運転を可能にする非定常低導電系で機能する。
論文 参考訳(メタデータ) (2024-02-26T15:01:54Z) - Neuromorphic Hebbian learning with magnetic tunnel junction synapses [41.92764939721262]
磁気トンネル接合(MTJ)の双対抵抗状態による高精度推論を実現するニューロモルフィックネットワークの提案と実験的検討を行った。
MTJシナプスで直接実装したニューロモルフィックネットワークの最初の実演を行った。
また,STT-MTJシナプスを用いた非教師型ヘビアン学習システムにより,MNIST手書き文字認識の競争精度が向上できることをシミュレーションにより実証した。
論文 参考訳(メタデータ) (2023-08-21T19:58:44Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Energy Efficient Learning with Low Resolution Stochastic Domain Wall
Synapse Based Deep Neural Networks [0.9176056742068814]
ドメインウォール(DW)位置の変動が大きい超低分解能(少なくとも5状態)シナプスは、エネルギー効率が良く、高い検定精度が得られることを実証した。
学習アルゴリズムに適切な修正を施すことにより,その動作と,その低分解能の効果に対処し,高いテスト精度を実現することができることを示す。
論文 参考訳(メタデータ) (2021-11-14T09:12:29Z) - Controllable reset behavior in domain wall-magnetic tunnel junction
artificial neurons for task-adaptable computation [1.4505273244528207]
ドメイン壁-磁気トンネル接合(DW-MTJ)デバイスは、生物学的ニューロンの挙動を本質的に捉えることができることが示されている。
そこで本研究では,DW-MTJ人工ニューロンにおいて,3つの代替メカニズムを用いてエジラックス動作を実装可能であることを示す。
論文 参考訳(メタデータ) (2021-01-08T16:50:29Z) - Compiling Spiking Neural Networks to Mitigate Neuromorphic Hardware
Constraints [0.30458514384586394]
スパイキングニューラルネットワーク(SNN)は、資源制約と電力制約のあるプラットフォーム上での計算制約付きパターン認識を効率的に行う。
ニューロモルフィックハードウェア上で実行されるSNNは、これらのプラットフォームのエネルギー消費をさらに削減することができる。
論文 参考訳(メタデータ) (2020-11-27T19:10:23Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Training of Quantized Deep Neural Networks using a Magnetic Tunnel
Junction-Based Synapse [23.08163992580639]
深層ニューラルネットワークの計算複雑性とメモリ強度のソリューションとして、量子ニューラルネットワーク(QNN)が積極的に研究されている。
磁気トンネル接合(MTJ)デバイスがQNNトレーニングにどのように役立つかを示す。
本稿では,MTJ動作を用いた新しいシナプス回路を導入し,量子化更新をサポートする。
論文 参考訳(メタデータ) (2019-12-29T11:36:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。