Neutralizing Token Aggregation via Information Augmentation for Efficient Test-Time Adaptation
- URL: http://arxiv.org/abs/2508.03388v2
- Date: Wed, 06 Aug 2025 16:16:17 GMT
- Title: Neutralizing Token Aggregation via Information Augmentation for Efficient Test-Time Adaptation
- Authors: Yizhe Xiong, Zihan Zhou, Yiwen Liang, Hui Chen, Zijia Lin, Tianxiang Hao, Fan Zhang, Jungong Han, Guiguang Ding,
- Abstract summary: Test-Time Adaptation (TTA) has emerged as an effective solution for adapting Vision Transformers (ViT) to distribution shifts without additional training data.<n>To reduce inference cost, plug-and-play token aggregation methods merge redundant tokens in ViTs to reduce total processed tokens.<n>We formalize this problem as Efficient Test-Time Adaptation (ETTA), seeking to preserve the adaptation capability of TTA while reducing inference latency.
- Score: 59.1067331268383
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Test-Time Adaptation (TTA) has emerged as an effective solution for adapting Vision Transformers (ViT) to distribution shifts without additional training data. However, existing TTA methods often incur substantial computational overhead, limiting their applicability in resource-constrained real-world scenarios. To reduce inference cost, plug-and-play token aggregation methods merge redundant tokens in ViTs to reduce total processed tokens. Albeit efficient, it suffers from significant performance degradation when directly integrated with existing TTA methods. We formalize this problem as Efficient Test-Time Adaptation (ETTA), seeking to preserve the adaptation capability of TTA while reducing inference latency. In this paper, we first provide a theoretical analysis from a novel mutual information perspective, showing that token aggregation inherently leads to information loss, which cannot be fully mitigated by conventional norm-tuning-based TTA methods. Guided by this insight, we propose to \textbf{N}eutralize Token \textbf{A}ggregation \textbf{v}ia \textbf{I}nformation \textbf{A}ugmentation (\textbf{NAVIA}). Specifically, we directly augment the [CLS] token embedding and incorporate adaptive biases into the [CLS] token in shallow layers of ViTs. We theoretically demonstrate that these augmentations, when optimized via entropy minimization, recover the information lost due to token aggregation. Extensive experiments across various out-of-distribution benchmarks demonstrate that NAVIA significantly outperforms state-of-the-art methods by over 2.5\%, while achieving an inference latency reduction of more than 20\%, effectively addressing the ETTA challenge.
Related papers
- SEVA: Leveraging Single-Step Ensemble of Vicinal Augmentations for Test-Time Adaptation [29.441669360316418]
Test-Time adaptation (TTA) aims to enhance model robustness against distribution shifts through rapid model adaptation during inference.<n> augmentation strategies can effectively unleash the potential of reliable samples, but the rapidly growing computational cost impedes their real-time application.<n>We propose a novel TTA approach named Single-step Ensemble of Vicinal Augmentations (SEVA) which can take advantage of data augmentations without increasing the computational burden.
arXiv Detail & Related papers (2025-05-07T02:58:37Z) - Is Less More? Exploring Token Condensation as Training-free Test-time Adaptation [43.09801987385207]
Contrastive Language-Image Pretraining (CLIP) excels at learning generalizable image representations but often falls short in zero-shot inference on certain datasets.<n>Test-time adaptation (TTA) mitigates this issue by adjusting components like normalization layers or context prompts, yet it typically requires large batch sizes and extensive augmentations.<n>We propose Token Condensation as Adaptation (TCA), a training-free adaptation method that takes a step beyond standard TC.
arXiv Detail & Related papers (2024-10-16T07:13:35Z) - Multiple-Exit Tuning: Towards Inference-Efficient Adaptation for Vision Transformer [47.85315815897107]
We introduce an inference-efficient tuning method termed multiple-exit tuning (MET)
MET integrates multiple exits into the pre-trained vision transformer (ViT) backbone.
In inference stage, easy samples will exit at early exits and only hard enough samples will flow to the last exit, thus saving the computational cost for easy samples.
arXiv Detail & Related papers (2024-09-21T03:25:18Z) - Active Test-Time Adaptation: Theoretical Analyses and An Algorithm [51.84691955495693]
Test-time adaptation (TTA) addresses distribution shifts for streaming test data in unsupervised settings.
We propose the novel problem setting of active test-time adaptation (ATTA) that integrates active learning within the fully TTA setting.
arXiv Detail & Related papers (2024-04-07T22:31:34Z) - Dynamic Tuning Towards Parameter and Inference Efficiency for ViT Adaptation [67.13876021157887]
Dynamic Tuning (DyT) is a novel approach to improve both parameter and inference efficiency for ViT adaptation.
DyT achieves superior performance compared to existing PEFT methods while evoking only 71% of their FLOPs on the VTAB-1K benchmark.
arXiv Detail & Related papers (2024-03-18T14:05:52Z) - TPC-ViT: Token Propagation Controller for Efficient Vision Transformer [6.341420717393898]
Vision transformers (ViTs) have achieved promising results on a variety of Computer Vision tasks.
Previous approaches that employ gradual token reduction to address this challenge assume that token redundancy in one layer implies redundancy in all the following layers.
We propose a novel token propagation controller (TPC) that incorporates two different token-distributions.
arXiv Detail & Related papers (2024-01-03T00:10:33Z) - Disentangled Representation Learning with Transmitted Information Bottleneck [57.22757813140418]
We present textbfDisTIB (textbfTransmitted textbfInformation textbfBottleneck for textbfDisd representation learning), a novel objective that navigates the balance between information compression and preservation.
arXiv Detail & Related papers (2023-11-03T03:18:40Z) - Optimization-Free Test-Time Adaptation for Cross-Person Activity
Recognition [30.350005654271868]
Test-Time Adaptation aims to utilize the test stream to adjust predictions in real-time inference.
High computational cost makes it intractable to run on resource-constrained edge devices.
We propose an Optimization-Free Test-Time Adaptation framework for sensor-based HAR.
arXiv Detail & Related papers (2023-10-28T02:20:33Z) - Approximated Prompt Tuning for Vision-Language Pre-trained Models [54.326232586461614]
In vision-language pre-trained models, prompt tuning often requires a large number of learnable tokens to bridge the gap between the pre-training and downstream tasks.
We propose a novel Approximated Prompt Tuning (APT) approach towards efficient VL transfer learning.
arXiv Detail & Related papers (2023-06-27T05:43:47Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.