論文の概要: Deep-learning based measurement of planetary radial velocities in the
presence of stellar variability
- arxiv url: http://arxiv.org/abs/2304.04807v2
- Date: Wed, 12 Apr 2023 22:31:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-14 10:40:38.404737
- Title: Deep-learning based measurement of planetary radial velocities in the
presence of stellar variability
- Title(参考訳): 深層学習による恒星変動の存在下での惑星ラジアル速度の測定
- Authors: Ian Colwell, Virisha Timmaraju, Alexander Wise
- Abstract要約: 我々は、HARPS-N Sun-as-a-star Spectraの3年間の恒星RVジッタを低減するためにニューラルネットワークを使用する。
マルチラインCNNは、半振幅0.2m/s、50日間、振幅8.8%、周期0.7%の誤差で惑星を回復することができる。
- 参考スコア(独自算出の注目度): 70.4007464488724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a deep-learning based approach for measuring small planetary
radial velocities in the presence of stellar variability. We use neural
networks to reduce stellar RV jitter in three years of HARPS-N sun-as-a-star
spectra. We develop and compare dimensionality-reduction and data splitting
methods, as well as various neural network architectures including single line
CNNs, an ensemble of single line CNNs, and a multi-line CNN. We inject
planet-like RVs into the spectra and use the network to recover them. We find
that the multi-line CNN is able to recover planets with 0.2 m/s semi-amplitude,
50 day period, with 8.8% error in the amplitude and 0.7% in the period. This
approach shows promise for mitigating stellar RV variability and enabling the
detection of small planetary RVs with unprecedented precision.
- Abstract(参考訳): 恒星変動の存在下での小さな惑星半径速度を測定するための深層学習に基づくアプローチを提案する。
我々は、HARPS-N Sun-as-a-starスペクトルの3年間の恒星RVジッタを低減するためにニューラルネットワークを使用する。
本稿では,次元還元法とデータ分割法と,一線cnn,一線cnnのアンサンブル,多線cnnを含む様々なニューラルネットワークアーキテクチャを構築し,比較する。
我々は、惑星のようなRVをスペクトルに注入し、ネットワークを使ってそれらを回復する。
マルチラインcnnは、0.2m/sの半振幅、50日周期の惑星を8.8%の誤差と0.7%の振幅で回収できることがわかった。
このアプローチは、恒星のRV変動を緩和し、前例のない精度で小さな惑星のRVを検出することを約束している。
関連論文リスト
- The Application of Machine Learning in Tidal Evolution Simulation of Star-Planet Systems [13.080151140004276]
進化曲線を生成する速度は、モデル生成曲線を4桁以上上回る。
我々の研究は、重要な計算資源と時間を最小限の精度で節約する効率的な方法を提供する。
論文 参考訳(メタデータ) (2024-08-29T02:09:19Z) - Improving Earth-like planet detection in radial velocity using deep learning [33.04110644981315]
本稿では,スペクトルレベルでの恒星活動信号を効率的にモデル化する新しい畳み込みニューラルネットワークアルゴリズムを提案する。
アルファ・ケンタウリ B (HD128621)、タウ・セティ (HD10700)、太陽の3つで観測されている。
我々のアルゴリズムは、恒星の活動信号を緩和するのにさらに効率的であり、地球の軌道上の2.2$mathrmM_oplus$の惑星に対応する0.2m/sの閾値に達することができる。
論文 参考訳(メタデータ) (2024-05-21T23:28:20Z) - Computing Transiting Exoplanet Parameters with 1D Convolutional Neural
Networks [0.0]
2つの1次元畳み込みニューラルネットワークモデルが提示される。
1つのモデルは完全な光曲線で動作し、軌道周期を推定する。
もう1つは位相折りたたみ光曲線を演算し、軌道の半主軸と惑星と恒星の半径比の正方形を推定する。
論文 参考訳(メタデータ) (2024-02-21T10:17:23Z) - DBNets: A publicly available deep learning tool to measure the masses of
young planets in dusty protoplanetary discs [49.1574468325115]
我々は、原始惑星系円盤から埋め込まれたとされる惑星の質量を素早く推定するDBNetsを開発した。
アウト・オブ・ディストリビューション・データでツールを広範囲にテストしました。
DBNetはトレーニング範囲外において、特定のしきい値以上の不確実性を返す入力を強く識別することができる。
光学的に薄い状態において、約60deg以下の傾斜で観測された円盤にのみ確実に適用することができる。
論文 参考訳(メタデータ) (2024-02-19T19:00:09Z) - Detecting train driveshaft damages using accelerometer signals and
Differential Convolutional Neural Networks [67.60224656603823]
本稿では,高度2次元畳み込みニューラルネットワーク(CNN)アーキテクチャに基づく鉄道軸状態監視システムの開発を提案する。
その結果,鉄道軸受振動信号を時間周波数領域表現,すなわち分光図に変換し,そのひび割れに応じて2次元CNNを訓練する。
論文 参考訳(メタデータ) (2022-11-15T15:04:06Z) - Modelling stellar activity with Gaussian process regression networks [0.0]
HARPS-N太陽分光観測を用いて、この枠組みがRVデータと従来の恒星活動指標を共同でモデル化できることを実証した。
我々は、RVと恒星活動時系列の相関関係を数日の間隔で最大にし、時系列における非定常行動の証拠を見いだす。
論文 参考訳(メタデータ) (2022-05-13T13:20:25Z) - Classification of diffraction patterns using a convolutional neural
network in single particle imaging experiments performed at X-ray
free-electron lasers [53.65540150901678]
X線自由電子レーザー(XFEL)における単一粒子イメージング(SPI)は、その自然環境における粒子の3次元構造を決定するのに特に適している。
再建を成功させるためには、単一のヒットに由来する回折パターンを多数の取得パターンから分離する必要がある。
本稿では,この課題を画像分類問題として定式化し,畳み込みニューラルネットワーク(CNN)アーキテクチャを用いて解決することを提案する。
論文 参考訳(メタデータ) (2021-12-16T17:03:14Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
我々は,真の配列多様体行列の変異チャネルデータから学習した畳み込みニューラルネットワーク(CNN)を導入する。
我々は低SNR体制でCNNを訓練し、すべてのSNRでDoAを予測する。
私たちの堅牢なソリューションは、ワイヤレスアレイセンサーから音響マイクロフォンやソナーまで、いくつかの分野に適用できます。
論文 参考訳(メタデータ) (2020-11-17T12:52:18Z) - Identifying Exoplanets with Deep Learning. IV. Removing Stellar Activity
Signals from Radial Velocity Measurements Using Neural Networks [36.77733316704363]
本研究では,RV観測から活動信号(星点/星雲による)を効果的に除去できることを,機械学習技術が示している。
将来的には、これらの技術は太陽系外の恒星の観測から活動信号を取り除き、太陽に似た恒星の周囲に居住可能な地球質量の太陽系外惑星を検出するのに役立ちます。
論文 参考訳(メタデータ) (2020-10-30T18:00:00Z) - Deep learning for gravitational-wave data analysis: A resampling
white-box approach [62.997667081978825]
我々は、LIGO検出器からの単一干渉計データを用いて、畳み込みニューラルネットワーク(CNN)を用いて、コンパクトなバイナリコレッセンスにおける重力波(GW)信号を検出する。
CNNはノイズを検出するのに非常に正確だが、GW信号のリコールに十分な感度がないため、CNNはGWトリガの生成よりもノイズ低減に適している。
論文 参考訳(メタデータ) (2020-09-09T03:28:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。