論文の概要: Scallop: A Language for Neurosymbolic Programming
- arxiv url: http://arxiv.org/abs/2304.04812v1
- Date: Mon, 10 Apr 2023 18:46:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 17:03:21.966917
- Title: Scallop: A Language for Neurosymbolic Programming
- Title(参考訳): Scallop: ニューロシンボリックプログラミングのための言語
- Authors: Ziyang Li, Jiani Huang, Mayur Naik
- Abstract要約: Scallopは、ディープラーニングと論理的推論の利点を組み合わせた言語である。
アルゴリズム推論を多様で困難なAIタスクで表現することができる。
機械学習プログラマが論理的なドメイン知識を統合するための簡潔なインターフェースを提供する。
- 参考スコア(独自算出の注目度): 14.148819428748597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Scallop, a language which combines the benefits of deep learning
and logical reasoning. Scallop enables users to write a wide range of
neurosymbolic applications and train them in a data- and compute-efficient
manner. It achieves these goals through three key features: 1) a flexible
symbolic representation that is based on the relational data model; 2) a
declarative logic programming language that is based on Datalog and supports
recursion, aggregation, and negation; and 3) a framework for automatic and
efficient differentiable reasoning that is based on the theory of provenance
semirings. We evaluate Scallop on a suite of eight neurosymbolic applications
from the literature. Our evaluation demonstrates that Scallop is capable of
expressing algorithmic reasoning in diverse and challenging AI tasks, provides
a succinct interface for machine learning programmers to integrate logical
domain knowledge, and yields solutions that are comparable or superior to
state-of-the-art models in terms of accuracy. Furthermore, Scallop's solutions
outperform these models in aspects such as runtime and data efficiency,
interpretability, and generalizability.
- Abstract(参考訳): 深層学習と論理推論の利点を組み合わせた言語であるscallopを提案する。
scallopを使えば、ユーザーは幅広いニューロシンボリックなアプリケーションを書き、データと計算効率のよい方法でトレーニングすることができる。
3つの重要な特徴によってこれらの目標を達成する。
1) 関係データモデルに基づくフレキシブルな記号表現
2) Datalogをベースとして再帰、集約、否定をサポートする宣言型論理プログラミング言語。
3)証明半環の理論に基づく自動的で効率的な微分可能な推論のための枠組み。
文献から8種類のニューロシンボリック・アプリケーションを用いてScallopの評価を行った。
我々の評価は、Scallopが多様かつ困難なAIタスクでアルゴリズム推論を表現できることを示し、機械学習プログラマが論理的ドメイン知識を統合するための簡潔なインターフェースを提供し、精度の観点から最先端モデルに匹敵する、あるいは優れたソリューションを提供する。
さらに、scallopのソリューションは、ランタイムやデータ効率、解釈可能性、一般化可能性といった面でこれらのモデルを上回る。
関連論文リスト
- LINC: A Neurosymbolic Approach for Logical Reasoning by Combining
Language Models with First-Order Logic Provers [60.009969929857704]
論理的推論は、科学、数学、社会に潜在的影響を与える可能性のある人工知能にとって重要なタスクである。
本研究では、LINCと呼ばれるモジュール型ニューロシンボリックプログラミングのようなタスクを再構成する。
我々は,FOLIOとProofWriterのバランスの取れたサブセットに対して,ほぼすべての実験条件下で,3つの異なるモデルに対して顕著な性能向上を観察した。
論文 参考訳(メタデータ) (2023-10-23T17:58:40Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Meta-Reasoning: Semantics-Symbol Deconstruction for Large Language Models [34.22393697176282]
実世界の象徴的手法の適用性と適応性を広げるためのメタ推論を提案する。
この方法はLLMに対して、推論に依存しない意味情報を汎用的な記号表現に分解する権限を与える。
我々は、算術、記号、論理的推論といった従来の推論タスクを含む10以上のデータセットと、理論の推論のようなより複雑な対話的推論タスクに関する広範な実験を行う。
論文 参考訳(メタデータ) (2023-06-30T17:38:10Z) - ConvFinQA: Exploring the Chain of Numerical Reasoning in Conversational
Finance Question Answering [70.6359636116848]
本稿では,対話型質問応答における数値推論の連鎖を研究するために,新しい大規模データセットConvFinQAを提案する。
我々のデータセットは、現実世界の会話において、長距離で複雑な数値推論パスをモデル化する上で大きな課題となる。
論文 参考訳(メタデータ) (2022-10-07T23:48:50Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - VAEL: Bridging Variational Autoencoders and Probabilistic Logic
Programming [3.759936323189418]
本稿では、可変オートエンコーダ(VAE)と確率論的論理(L)プログラミングの推論能力を統合するニューラルシンボリック生成モデルVAELを提案する。
論文 参考訳(メタデータ) (2022-02-07T10:16:53Z) - Logic Tensor Networks [9.004005678155023]
学習と推論をサポートする神経シンボリック形式論と計算モデルであるLogic Networks(LTN)を提示する。
LTNがいくつかのAIタスクの仕様と計算に一様言語を提供することを示す。
論文 参考訳(メタデータ) (2020-12-25T22:30:18Z) - Learning Generalized Relational Heuristic Networks for Model-Agnostic
Planning [29.714818991696088]
本稿では,記号的行動モデルが存在しない場合の一般化を学習するための新しいアプローチを開発する。
データの効率的で一般化可能な学習を容易にするために、抽象状態表現を使用する。
論文 参考訳(メタデータ) (2020-07-10T06:08:28Z) - Closed Loop Neural-Symbolic Learning via Integrating Neural Perception,
Grammar Parsing, and Symbolic Reasoning [134.77207192945053]
従来の手法は強化学習アプローチを用いてニューラルシンボリックモデルを学ぶ。
我々は,脳神経知覚と記号的推論を橋渡しする前に,textbfgrammarモデルをテキストシンボリックとして導入する。
本稿では,トップダウンのヒューマンライクな学習手順を模倣して誤りを伝播する新しいtextbfback-searchアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-11T17:42:49Z) - Relational Neural Machines [19.569025323453257]
本稿では,学習者のパラメータと一階論理に基づく推論を共同で学習するフレームワークを提案する。
ニューラルネットワークは、純粋な準記号学習の場合の古典的な学習結果とマルコフ論理ネットワークの両方を復元することができる。
適切なアルゴリズム解は、大規模な問題において学習と推論が引き出すことができるように考案されている。
論文 参考訳(メタデータ) (2020-02-06T10:53:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。