論文の概要: VAEL: Bridging Variational Autoencoders and Probabilistic Logic
Programming
- arxiv url: http://arxiv.org/abs/2202.04178v1
- Date: Mon, 7 Feb 2022 10:16:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-10 15:46:50.969657
- Title: VAEL: Bridging Variational Autoencoders and Probabilistic Logic
Programming
- Title(参考訳): VAEL: 変分オートエンコーダのブリッジングと確率論理プログラミング
- Authors: Eleonora Misino, Giuseppe Marra, Emanuele Sansone
- Abstract要約: 本稿では、可変オートエンコーダ(VAE)と確率論的論理(L)プログラミングの推論能力を統合するニューラルシンボリック生成モデルVAELを提案する。
- 参考スコア(独自算出の注目度): 3.759936323189418
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present VAEL, a neuro-symbolic generative model integrating variational
autoencoders (VAE) with the reasoning capabilities of probabilistic logic (L)
programming. Besides standard latent subsymbolic variables, our model exploits
a probabilistic logic program to define a further structured representation,
which is used for logical reasoning. The entire process is end-to-end
differentiable. Once trained, VAEL can solve new unseen generation tasks by (i)
leveraging the previously acquired knowledge encoded in the neural component
and (ii) exploiting new logical programs on the structured latent space. Our
experiments provide support on the benefits of this neuro-symbolic integration
both in terms of task generalization and data efficiency. To the best of our
knowledge, this work is the first to propose a general-purpose end-to-end
framework integrating probabilistic logic programming into a deep generative
model.
- Abstract(参考訳): 本稿では,可変オートエンコーダ(vae)と確率論理(l)プログラミングの推論能力を統合するニューロシンボリック生成モデルvaelを提案する。
標準潜伏部分シンボリック変数の他に,確率論的論理プログラムを用いて,論理推論に使用される構造的表現を定義する。
プロセス全体はエンドツーエンドで微分可能である。
VAELはトレーニングが終わったら、目に見えない新しいタスクを解決できる
(i)神経成分に符号化された予め獲得した知識の活用及び
(ii)構造化潜在空間における新しい論理プログラムの活用
本実験は,タスクの一般化とデータ効率の両面から,このニューロシンボリック統合の利点を裏付けるものである。
我々の知る限りでは、確率論的論理プログラミングを深い生成モデルに統合する汎用的なエンドツーエンドフレームワークを最初に提案する。
関連論文リスト
- stl2vec: Semantic and Interpretable Vector Representation of Temporal Logic [0.5956301166481089]
論理式を意味的に基底としたベクトル表現(機能埋め込み)を提案する。
我々はいくつかの望ましい性質を持つ公式の連続的な埋め込みを計算する。
本稿では,学習モデル検査とニューロシンボリック・フレームワークの2つの課題において,アプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-05-23T10:04:56Z) - A Novel Neural-symbolic System under Statistical Relational Learning [50.747658038910565]
本稿では,GBPGRと呼ばれる2段階の確率的グラフィカル推論フレームワークを提案する。
GBPGRでは、シンボル推論の結果を用いて、ディープラーニングモデルによる予測を洗練し、修正する。
提案手法は高い性能を示し, 帰納的タスクと帰納的タスクの両方において効果的な一般化を示す。
論文 参考訳(メタデータ) (2023-09-16T09:15:37Z) - dPASP: A Comprehensive Differentiable Probabilistic Answer Set
Programming Environment For Neurosymbolic Learning and Reasoning [0.0]
本稿では,ニューロシンボリック推論のための新しい宣言型論理プログラミングフレームワークdPASPを提案する。
非決定論的・矛盾的・不完全・統計的知識を表現できる確率論的論理プログラムのセマンティクスについて論じる。
次に、いくつかのサンプルプログラムとともに、言語での推論と学習をサポートする実装されたパッケージについて説明する。
論文 参考訳(メタデータ) (2023-08-05T19:36:58Z) - Join-Chain Network: A Logical Reasoning View of the Multi-head Attention
in Transformer [59.73454783958702]
本稿では,多くの結合演算子を連結して出力論理式をモデル化するシンボリック推論アーキテクチャを提案する。
特に,このような結合鎖のアンサンブルが'ツリー構造'の1次論理式であるFOETの広い部分集合を表現できることを実証する。
変圧器における多頭部自己保持モジュールは,確率的述語空間における結合作用素の結合境界を実装する特別なニューラル演算子として理解することができる。
論文 参考訳(メタデータ) (2022-10-06T07:39:58Z) - LogiGAN: Learning Logical Reasoning via Adversarial Pre-training [58.11043285534766]
本稿では,言語モデルの論理的推論能力を向上させるために,教師なしの対人事前学習フレームワークLogiGANを提案する。
人間の学習におけるリフレクティブ思考の促進効果に着想を得て,逆生成検証アーキテクチャを用いて学習思考過程をシミュレートする。
LogiGANで事前トレーニングされたベースモデルと大規模言語モデルの両方で、12のデータセットで明らかなパフォーマンス改善が示されている。
論文 参考訳(メタデータ) (2022-05-18T08:46:49Z) - Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks [65.23508422635862]
我々は最近提案された論理ニューラルネットワーク(LNN)を用いた学習規則を提案する。
他のものと比較して、LNNは古典的なブール論理と強く結びついている。
標準ベンチマークタスクの実験では、LNNルールが極めて解釈可能であることを確認した。
論文 参考訳(メタデータ) (2021-12-06T19:38:30Z) - SLASH: Embracing Probabilistic Circuits into Neural Answer Set
Programming [15.814914345000574]
SLASH(Deep Probabilistic Language:DPPL)を紹介します。
SLASHのコアとなるのは、NPP(Neural-Probabilistic Predicates)と、応答セットプログラミングを通じて統合された論理プログラムである。
我々は,MNIST加算のベンチマークデータとDPPLの欠落データ予測や最先端性能のセット予測といった新しいタスクに基づいてSLASHを評価する。
論文 参考訳(メタデータ) (2021-10-07T12:35:55Z) - DeepStochLog: Neural Stochastic Logic Programming [15.938755941588159]
ニューラルネットワークプログラミングにおける推論と学習は、ニューラルネットワークの確率論的論理プログラムよりもはるかに優れていることを示す。
DeepStochLogは、ニューラルネットワークのシンボリック学習タスクにおける最先端の結果を達成する。
論文 参考訳(メタデータ) (2021-06-23T17:59:04Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
本研究では,時間論理仕様を満たすための学習課題を,未知の環境下でエージェントのグループで検討する。
我々は、時間論理仕様のための最初のマルチエージェント強化学習手法を開発した。
主アルゴリズムの正確性と収束性を保証する。
論文 参考訳(メタデータ) (2021-02-01T01:13:03Z) - Logical Neural Networks [51.46602187496816]
ニューラルネットワーク(学習)と記号論理(知識と推論)の両方の重要な特性をシームレスに提供する新しいフレームワークを提案する。
すべてのニューロンは、重み付けされた実数値論理における公式の構成要素としての意味を持ち、非常に解釈不能な非絡み合い表現をもたらす。
推論は事前に定義されたターゲット変数ではなく、オムニであり、論理的推論に対応する。
論文 参考訳(メタデータ) (2020-06-23T16:55:45Z) - Relational Neural Machines [19.569025323453257]
本稿では,学習者のパラメータと一階論理に基づく推論を共同で学習するフレームワークを提案する。
ニューラルネットワークは、純粋な準記号学習の場合の古典的な学習結果とマルコフ論理ネットワークの両方を復元することができる。
適切なアルゴリズム解は、大規模な問題において学習と推論が引き出すことができるように考案されている。
論文 参考訳(メタデータ) (2020-02-06T10:53:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。