DASS Good: Explainable Data Mining of Spatial Cohort Data
- URL: http://arxiv.org/abs/2304.04870v1
- Date: Mon, 10 Apr 2023 21:24:21 GMT
- Title: DASS Good: Explainable Data Mining of Spatial Cohort Data
- Authors: Andrew Wentzel, Carla Floricel, Guadalupe Canahuate, Mohamed A.Naser,
Abdallah S. Mohamed, Clifton David Fuller, Lisanne van Dijk, G.Elisabeta
Marai
- Abstract summary: We describe the co-design of a modeling system, DASS, to support the hybrid human-machine development and validation of predictive models.
DASS incorporates human-in-the-loop visual steering, spatial data, and explainable AI to augment domain knowledge with automatic data mining.
- Score: 3.1442270083085964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing applicable clinical machine learning models is a difficult task
when the data includes spatial information, for example, radiation dose
distributions across adjacent organs at risk. We describe the co-design of a
modeling system, DASS, to support the hybrid human-machine development and
validation of predictive models for estimating long-term toxicities related to
radiotherapy doses in head and neck cancer patients. Developed in collaboration
with domain experts in oncology and data mining, DASS incorporates
human-in-the-loop visual steering, spatial data, and explainable AI to augment
domain knowledge with automatic data mining. We demonstrate DASS with the
development of two practical clinical stratification models and report feedback
from domain experts. Finally, we describe the design lessons learned from this
collaborative experience.
Related papers
- Evaluating the Predictive Features of Person-Centric Knowledge Graph Embeddings: Unfolding Ablation Studies [0.757843972001219]
We propose a systematic approach to examine the results of GNN models trained with structured and unstructured information from the MIMIC-III dataset.
We show the robustness of this approach in identifying predictive features in PKGs for the task of readmission prediction.
arXiv Detail & Related papers (2024-08-27T09:48:25Z) - Uncovering Knowledge Gaps in Radiology Report Generation Models through Knowledge Graphs [18.025481751074214]
We introduce a system, named ReXKG, which extracts structured information from processed reports to construct a radiology knowledge graph.
We conduct an in-depth comparative analysis of AI-generated and human-written radiology reports, assessing the performance of both specialist and generalist models.
arXiv Detail & Related papers (2024-08-26T16:28:56Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - The Impact of Auxiliary Patient Data on Automated Chest X-Ray Report Generation and How to Incorporate It [12.61239008314719]
This study investigates the integration of diverse patient data sources into multimodal language models for automated chest X-ray (CXR) report generation.
Utilising the MIMIC-CXR and MIMIC-IV-ED datasets, we incorporate detailed patient information such as a vital signsperiodic, medications, and clinical history to enhance diagnostic accuracy.
arXiv Detail & Related papers (2024-06-19T03:25:31Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Toward Cohort Intelligence: A Universal Cohort Representation Learning
Framework for Electronic Health Record Analysis [15.137213823470544]
We propose a universal COhort Representation lEarning (CORE) framework to augment EHR utilization by leveraging the fine-grained cohort information among patients.
CORE is readily applicable to diverse backbone models, serving as a universal plug-in framework to infuse cohort information into healthcare methods for boosted performance.
arXiv Detail & Related papers (2023-04-10T09:12:37Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Explainable Spatial Clustering: Leveraging Spatial Data in Radiation
Oncology [3.2638612423470934]
We reflect on the design of visualizations for explaining novel approaches to clustering complex anatomical data from head and neck cancer patients.
These visualizations were developed, through participatory design, for clinical audiences during a multi-year collaboration with radiation oncologists and statisticians.
arXiv Detail & Related papers (2020-08-25T21:31:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.