論文の概要: Financial Time Series Forecasting using CNN and Transformer
- arxiv url: http://arxiv.org/abs/2304.04912v1
- Date: Tue, 11 Apr 2023 00:56:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 16:36:03.822809
- Title: Financial Time Series Forecasting using CNN and Transformer
- Title(参考訳): CNNとトランスを用いた財務時系列予測
- Authors: Zhen Zeng, Rachneet Kaur, Suchetha Siddagangappa, Saba Rahimi, Tucker
Balch, Manuela Veloso
- Abstract要約: 本稿では,CNN と Transformer のパワーを活用し,時系列内の短期的および長期的依存関係をモデル化する。
本実験では, 統計的・深層学習法と比較し, 提案手法の有効性を実証した。
- 参考スコア(独自算出の注目度): 16.57996422431636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting is important across various domains for
decision-making. In particular, financial time series such as stock prices can
be hard to predict as it is difficult to model short-term and long-term
temporal dependencies between data points. Convolutional Neural Networks (CNN)
are good at capturing local patterns for modeling short-term dependencies.
However, CNNs cannot learn long-term dependencies due to the limited receptive
field. Transformers on the other hand are capable of learning global context
and long-term dependencies. In this paper, we propose to harness the power of
CNNs and Transformers to model both short-term and long-term dependencies
within a time series, and forecast if the price would go up, down or remain the
same (flat) in the future. In our experiments, we demonstrated the success of
the proposed method in comparison to commonly adopted statistical and deep
learning methods on forecasting intraday stock price change of S&P 500
constituents.
- Abstract(参考訳): 時系列予測は意思決定のために様々な領域で重要である。
特に、データポイント間の短期的・長期的依存関係をモデル化することが困難であるため、株価などの金融時系列は予測が難しい。
畳み込みニューラルネットワーク(CNN)は、短期的依存関係をモデル化するためのローカルパターンのキャプチャに長けている。
しかし、CNNは受容領域が限られているため、長期的な依存関係を学習できない。
一方、トランスフォーマーは、グローバルコンテキストと長期的な依存関係を学ぶことができる。
本稿では,CNN と Transformer のパワーを活用して,時系列内の短期的および長期的依存関係をモデル化し,将来価格が上がるか,下降するか,あるいは同じ(フラットな)状態に留まるかを予測する。
本研究では,S&P500成分の日内株価変動予測における統計的・深層学習法と比較して,提案手法の有効性を実証した。
関連論文リスト
- TimeBridge: Non-Stationarity Matters for Long-term Time Series Forecasting [49.6208017412376]
TimeBridgeは、非定常性と依存性モデリングの間のギャップを埋めるために設計された新しいフレームワークである。
TimeBridgeは、短期予測と長期予測の両方において、最先端のパフォーマンスを一貫して達成する。
論文 参考訳(メタデータ) (2024-10-06T10:41:03Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
時系列予測は、産業機器の保守、気象学、エネルギー消費、交通流、金融投資など、様々な分野で重要な役割を果たしている。
現在のディープラーニングベースの予測モデルは、予測結果と基礎的真実の間に大きな違いを示すことが多い。
本稿では、時系列をトレンドと季節成分に分解する2つのホライズンズにおける周波数領域注意モデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:37:02Z) - Stock Trend Prediction: A Semantic Segmentation Approach [3.718476964451589]
完全2次元畳み込みエンコーダデコーダを用いた長期株価変動傾向の予測手法を提案する。
我々のCNNの階層構造は、長期的・短期的な関係を効果的に捉えることができる。
論文 参考訳(メタデータ) (2023-03-09T01:29:09Z) - Grouped self-attention mechanism for a memory-efficient Transformer [64.0125322353281]
天気予報、電力消費、株式市場などの現実世界のタスクには、時間とともに変化するデータの予測が含まれる。
時系列データは通常、その周期的特性と時間的長期依存性のために、長いシーケンスで長い観察期間にわたって記録される。
我々はGSA(Grouped Self-Attention)とCCA(Compressed Cross-Attention)の2つの新しいモジュールを提案する。
提案モデルでは,既存の手法に匹敵する計算量と性能の低減が効果的に示された。
論文 参考訳(メタデータ) (2022-10-02T06:58:49Z) - Long Short-Term Memory Neural Network for Financial Time Series [0.0]
株価変動の予測のために,単体および並列長短期記憶ニューラルネットワークのアンサンブルを提案する。
ストレートなトレーディング戦略では、ランダムに選択されたポートフォリオと指数のすべての株を含むポートフォリオを比較すると、LSTMアンサンブルから得られたポートフォリオが平均的なリターンと時間とともに高い累積リターンを提供することを示している。
論文 参考訳(メタデータ) (2022-01-20T15:17:26Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
本稿では,高頻度金融時系列を扱うディープニューラルネットワークのための新しいデータ駆動正規化手法を提案する。
提案手法は,財務時系列のバイモーダル特性を考慮したものである。
我々の実験は最先端のニューラルネットワークと高周波データを用いて行われ、他の正規化技術よりも大幅に改善された。
論文 参考訳(メタデータ) (2021-09-01T07:52:03Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Spatiotemporal Adaptive Neural Network for Long-term Forecasting of
Financial Time Series [0.2793095554369281]
本稿では,ディープニューラルネットワーク(DNN)が時系列予測(TS)の同時予測に利用できるかどうかを検討する。
動的因子グラフ(DFG)を用いて多変量自己回帰モデルを構築する。
ACTMでは、TSモデルの自己回帰順序を時間とともに変化させ、より大きな確率分布をモデル化することができる。
論文 参考訳(メタデータ) (2020-03-27T00:53:11Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。