論文の概要: Sentence-Level Relation Extraction via Contrastive Learning with
Descriptive Relation Prompts
- arxiv url: http://arxiv.org/abs/2304.04935v1
- Date: Tue, 11 Apr 2023 02:15:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 16:28:14.919632
- Title: Sentence-Level Relation Extraction via Contrastive Learning with
Descriptive Relation Prompts
- Title(参考訳): 記述型関係プロンプトを用いたコントラスト学習による文レベル関係抽出
- Authors: Jiewen Zheng, Ze Chen
- Abstract要約: 本稿では、エンティティ情報、関係知識、エンティティタイプ制約を協調的に考慮する新しいパラダイムであるContrastive Learning with Descriptive Relation Prompts(CTL-)を提案する。
CTL-はTACREDで76.7%のF1スコアを獲得している。
新しい提案パラダイムは、最先端のパフォーマンスであるTACREVとRe-TACREDでそれぞれ85.8%と91.6%のF1スコアを達成する。
- 参考スコア(独自算出の注目度): 1.5736899098702974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sentence-level relation extraction aims to identify the relation between two
entities for a given sentence. The existing works mostly focus on obtaining a
better entity representation and adopting a multi-label classifier for relation
extraction. A major limitation of these works is that they ignore background
relational knowledge and the interrelation between entity types and candidate
relations. In this work, we propose a new paradigm, Contrastive Learning with
Descriptive Relation Prompts(CTL-DRP), to jointly consider entity information,
relational knowledge and entity type restrictions. In particular, we introduce
an improved entity marker and descriptive relation prompts when generating
contextual embedding, and utilize contrastive learning to rank the restricted
candidate relations. The CTL-DRP obtains a competitive F1-score of 76.7% on
TACRED. Furthermore, the new presented paradigm achieves F1-scores of 85.8% and
91.6% on TACREV and Re-TACRED respectively, which are both the state-of-the-art
performance.
- Abstract(参考訳): 文レベルの関係抽出は、与えられた文に対する2つのエンティティ間の関係を識別することを目的としている。
既存の作品は、より優れたエンティティ表現の獲得と、関係抽出のためのマルチラベル分類器の採用に重点を置いている。
これらの研究の大きな制限は、背景関係知識を無視し、エンティティタイプと候補関係の相互関係を無視することである。
本研究では, エンティティ情報, 関係知識, エンティティタイプ制約を共同で検討するための, コントラスト学習(Contrastive Learning with Descriptive Relation Prompts, CTL-DRP)を提案する。
特に,コンテクスト埋め込み生成時に改良されたエンティティマーカーと記述関係プロンプトを導入し,コントラスト学習を用いて制限された候補関係をランク付けする。
CTL-DRPはTACREDで76.7%のF1スコアを獲得している。
さらに、新しい提案パラダイムは、最先端のパフォーマンスであるTACREVとRe-TACREDでそれぞれ85.8%と91.6%のF1スコアを達成する。
関連論文リスト
- RGAT: A Deeper Look into Syntactic Dependency Information for
Coreference Resolution [8.017036537163008]
我々は、事前学習されたBERTと構文関係グラフ注意ネットワーク(RGAT)を組み合わせたエンドツーエンドの解決法を提案する。
特に、RGATモデルが最初に提案され、次に、構文依存グラフを理解し、より優れたタスク固有の構文埋め込みを学ぶために使用される。
BERT埋め込みと構文埋め込みを組み合わせた統合アーキテクチャを構築し、下流タスクのブレンディング表現を生成する。
論文 参考訳(メタデータ) (2023-09-10T09:46:38Z) - HIORE: Leveraging High-order Interactions for Unified Entity Relation
Extraction [85.80317530027212]
本稿では,統合エンティティ関係抽出のための新しい手法であるHIOREを提案する。
重要な洞察は、単語ペア間の複雑な関連を活用することである。
実験の結果,HIOREは従来最高の統一モデルよりも1.11.8 F1ポイント向上した。
論文 参考訳(メタデータ) (2023-05-07T14:57:42Z) - FECANet: Boosting Few-Shot Semantic Segmentation with Feature-Enhanced
Context-Aware Network [48.912196729711624]
Few-shot セマンティックセグメンテーション(Few-shot semantic segmentation)は、新しいクラスの各ピクセルを、わずかに注釈付きサポートイメージで検索するタスクである。
本稿では,クラス間の類似性に起因するマッチングノイズを抑制するために,機能拡張コンテキスト認識ネットワーク(FECANet)を提案する。
さらに,前景と背景の余分な対応関係を符号化する新たな相関再構成モジュールを提案する。
論文 参考訳(メタデータ) (2023-01-19T16:31:13Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
本稿では,関係抽出のための中間ステップ(SAIS)を監督し,拡張することにより,関連コンテキストやエンティティタイプをキャプチャするモデルを明示的に教えることを提案する。
そこで本提案手法は,より効果的な管理を行うため,より優れた品質の関係を抽出するだけでなく,それに対応する証拠をより正確に抽出する。
論文 参考訳(メタデータ) (2021-09-24T17:37:35Z) - D-REX: Dialogue Relation Extraction with Explanations [65.3862263565638]
この研究は、部分的にラベル付けされたデータのみを使用しながら関係が存在することを示す説明を抽出することに焦点を当てている。
本稿では,政策誘導型半教師付きアルゴリズムD-REXを提案する。
約90%の人は、強いBERTに基づく関節関係抽出と説明モデルよりもD-REXの説明を好んでいる。
論文 参考訳(メタデータ) (2021-09-10T22:30:48Z) - Distantly Supervised Relation Extraction via Recursive
Hierarchy-Interactive Attention and Entity-Order Perception [3.8651116146455533]
文中では、2つの実体の出現順序は、その意味論の理解に寄与する。
文エンコーダがよりエンティティの外観情報を保持できるように,Entity-Order Perception (EOP) と呼ばれる新たな訓練目標を導入する。
提案手法は,P-R曲線,AUC,Top-N精度などの評価指標を用いて,最先端性能を実現する。
論文 参考訳(メタデータ) (2021-05-18T00:45:25Z) - ZS-BERT: Towards Zero-Shot Relation Extraction with Attribute
Representation Learning [10.609715843964263]
目に見える関係と見えない関係のテキスト記述を組み込んでゼロショット関係抽出問題を定式化する。
本稿では,手作りラベリングや複数対属性分類を使わずに,目に見えない関係を直接予測する,新しいマルチタスク学習モデルであるゼロショットBERTを提案する。
2つのよく知られたデータセットで行われた実験では、ZS-BERTが少なくとも13.54%のF1スコアの改善によって既存の方法より優れていることが示されています。
論文 参考訳(メタデータ) (2021-04-10T06:53:41Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
本稿では,ラベルのないテキストから関係プロトタイプを学習するための一般的なアプローチを提案する。
我々は、エンティティ間の暗黙的な要因として関係プロトタイプを学習する。
私たちは、New York TimesとGoogle Distant Supervisionの2つの公開データセットで実験を行います。
論文 参考訳(メタデータ) (2020-11-27T06:21:12Z) - A Frustratingly Easy Approach for Entity and Relation Extraction [25.797992240847833]
本稿では,エンティティと関係抽出のための簡単なパイプライン化手法を提案する。
標準ベンチマーク(ACE04、ACE05、SciERC)における新しい最先端技術を確立する。
このアプローチは基本的に2つの独立したエンコーダ上に構築され、単にエンティティモデルを使用して関係モデルの入力を構築します。
論文 参考訳(メタデータ) (2020-10-24T07:14:01Z) - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training [49.9995628166064]
本稿では,2つのメカニズムを備えたモデルであるCTEGを提案する。
一方、注意を誘導するEGA機構を導入し、混乱を引き起こす情報をフィルタリングする。
一方,コンフュージョン・アウェア・トレーニング(CAT)法は,関係の識別を明示的に学習するために提案されている。
論文 参考訳(メタデータ) (2020-10-21T11:07:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。