Diffusion Models for Constrained Domains
- URL: http://arxiv.org/abs/2304.05364v2
- Date: Thu, 7 Mar 2024 13:48:04 GMT
- Title: Diffusion Models for Constrained Domains
- Authors: Nic Fishman, Leo Klarner, Valentin De Bortoli, Emile Mathieu, Michael
Hutchinson
- Abstract summary: We present two distinct noising processes based on (i) the logarithmic barrier metric and (ii) the reflected Brownian motion induced by the constraints.
We then demonstrate the practical utility of our methods on a number of synthetic and real-world tasks, including applications from robotics and protein design.
- Score: 11.488860260925504
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Denoising diffusion models are a novel class of generative algorithms that
achieve state-of-the-art performance across a range of domains, including image
generation and text-to-image tasks. Building on this success, diffusion models
have recently been extended to the Riemannian manifold setting, broadening
their applicability to a range of problems from the natural and engineering
sciences. However, these Riemannian diffusion models are built on the
assumption that their forward and backward processes are well-defined for all
times, preventing them from being applied to an important set of tasks that
consider manifolds defined via a set of inequality constraints. In this work,
we introduce a principled framework to bridge this gap. We present two distinct
noising processes based on (i) the logarithmic barrier metric and (ii) the
reflected Brownian motion induced by the constraints. As existing diffusion
model techniques cannot be applied in this setting, we derive new tools to
define such models in our framework. We then demonstrate the practical utility
of our methods on a number of synthetic and real-world tasks, including
applications from robotics and protein design.
Related papers
- G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
This paper presents a novel method for addressing linear inverse problems by leveraging image-generation models based on discrete diffusion as priors.
To the best of our knowledge, this is the first approach to use discrete diffusion model-based priors for solving image inverse problems.
arXiv Detail & Related papers (2024-10-09T06:18:25Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
diffusion model-based solutions have emerged as widely acclaimed for their ability to produce samples of superior quality and diversity.
We present three generic diffusion modeling frameworks and explore their correlations with other deep generative models.
We summarize extended diffusion models applied in other tasks, including medical, remote sensing, and video scenarios.
arXiv Detail & Related papers (2024-06-17T01:49:27Z) - Reflected Schr\"odinger Bridge for Constrained Generative Modeling [16.72888494254555]
Reflected diffusion models have become the go-to method for large-scale generative models in real-world applications.
We introduce the Reflected Schrodinger Bridge algorithm: an entropy-regularized optimal transport approach tailored generating data within diverse bounded domains.
Our algorithm yields robust generative modeling in diverse domains, and its scalability is demonstrated in real-world constrained generative modeling through standard image benchmarks.
arXiv Detail & Related papers (2024-01-06T14:39:58Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Metropolis Sampling for Constrained Diffusion Models [11.488860260925504]
Denoising diffusion models have recently emerged as the predominant paradigm for generative modelling on image domains.
We introduce an alternative, simple noretisation scheme based on the reflected Brownian motion.
arXiv Detail & Related papers (2023-07-11T17:05:23Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - Infinite-Dimensional Diffusion Models [4.342241136871849]
We formulate diffusion-based generative models in infinite dimensions and apply them to the generative modeling of functions.
We show that our formulations are well posed in the infinite-dimensional setting and provide dimension-independent distance bounds from the sample to the target measure.
We also develop guidelines for the design of infinite-dimensional diffusion models.
arXiv Detail & Related papers (2023-02-20T18:00:38Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z) - Let us Build Bridges: Understanding and Extending Diffusion Generative
Models [19.517597928769042]
Diffusion-based generative models have achieved promising results recently, but raise an array of open questions.
This work tries to re-exam the overall framework in order to gain better theoretical understandings.
We present 1) a first theoretical error analysis for learning diffusion generation models, and 2) a simple and unified approach to learning on data from different discrete and constrained domains.
arXiv Detail & Related papers (2022-08-31T08:58:10Z) - Approximate Latent Force Model Inference [1.3927943269211591]
latent force models offer an interpretable alternative to purely data driven tools for inference in dynamical systems.
We show that a neural operator approach can scale our model to thousands of instances, enabling fast, distributed computation.
arXiv Detail & Related papers (2021-09-24T09:55:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.