MIRReS: Multi-bounce Inverse Rendering using Reservoir Sampling
- URL: http://arxiv.org/abs/2406.16360v2
- Date: Tue, 25 Jun 2024 01:19:14 GMT
- Title: MIRReS: Multi-bounce Inverse Rendering using Reservoir Sampling
- Authors: Yuxin Dai, Qi Wang, Jingsen Zhu, Dianbing Xi, Yuchi Huo, Chen Qian, Ying He,
- Abstract summary: We present MIRReS, a novel two-stage inverse rendering framework.
Our method extracts an explicit geometry (triangular mesh) in stage one, and introduces a more realistic physically-based inverse rendering model.
Our method effectively estimates indirect illumination, including self-shadowing and internal reflections.
- Score: 17.435649250309904
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present MIRReS, a novel two-stage inverse rendering framework that jointly reconstructs and optimizes the explicit geometry, material, and lighting from multi-view images. Unlike previous methods that rely on implicit irradiance fields or simplified path tracing algorithms, our method extracts an explicit geometry (triangular mesh) in stage one, and introduces a more realistic physically-based inverse rendering model that utilizes multi-bounce path tracing and Monte Carlo integration. By leveraging multi-bounce path tracing, our method effectively estimates indirect illumination, including self-shadowing and internal reflections, which improves the intrinsic decomposition of shape, material, and lighting. Moreover, we incorporate reservoir sampling into our framework to address the noise in Monte Carlo integration, enhancing convergence and facilitating gradient-based optimization with low sample counts. Through qualitative and quantitative evaluation of several scenarios, especially in challenging scenarios with complex shadows, we demonstrate that our method achieves state-of-the-art performance on decomposition results. Additionally, our optimized explicit geometry enables applications such as scene editing, relighting, and material editing with modern graphics engines or CAD software. The source code is available at https://brabbitdousha.github.io/MIRReS/
Related papers
- RelitLRM: Generative Relightable Radiance for Large Reconstruction Models [52.672706620003765]
We propose RelitLRM for generating high-quality Gaussian splatting representations of 3D objects under novel illuminations.
Unlike prior inverse rendering methods requiring dense captures and slow optimization, RelitLRM adopts a feed-forward transformer-based model.
We show our sparse-view feed-forward RelitLRM offers competitive relighting results to state-of-the-art dense-view optimization-based baselines.
arXiv Detail & Related papers (2024-10-08T17:40:01Z) - SplitNeRF: Split Sum Approximation Neural Field for Joint Geometry,
Illumination, and Material Estimation [65.99344783327054]
We present a novel approach for digitizing real-world objects by estimating their geometry, material properties, and lighting.
Our method incorporates into Radiance Neural Field (NeRF) pipelines the split sum approximation used with image-based lighting for real-time physical-based rendering.
Our method is capable of attaining state-of-the-art relighting quality after only $sim1$ hour of training in a single NVIDIA A100 GPU.
arXiv Detail & Related papers (2023-11-28T10:36:36Z) - NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering [23.482941494283978]
This paper presents a method, namely NeuS-PIR, for recovering relightable neural surfaces from multi-view images or video.
Unlike methods based on NeRF and discrete meshes, our method utilizes implicit neural surface representation to reconstruct high-quality geometry.
Our method enables advanced applications such as relighting, which can be seamlessly integrated with modern graphics engines.
arXiv Detail & Related papers (2023-06-13T09:02:57Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images.
We propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images.
arXiv Detail & Related papers (2023-03-29T12:05:19Z) - Shape, Light & Material Decomposition from Images using Monte Carlo
Rendering and Denoising [0.7366405857677225]
We show that a more realistic shading model, incorporating ray tracing and Monte Carlo integration, substantially improves decomposition into shape, materials & lighting.
We incorporate multiple importance sampling and denoising in a novel inverse rendering pipeline.
This substantially improves convergence and enables gradient-based optimization at low sample counts.
arXiv Detail & Related papers (2022-06-07T15:19:18Z) - RISP: Rendering-Invariant State Predictor with Differentiable Simulation
and Rendering for Cross-Domain Parameter Estimation [110.4255414234771]
Existing solutions require massive training data or lack generalizability to unknown rendering configurations.
We propose a novel approach that marries domain randomization and differentiable rendering gradients to address this problem.
Our approach achieves significantly lower reconstruction errors and has better generalizability among unknown rendering configurations.
arXiv Detail & Related papers (2022-05-11T17:59:51Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.