Bounds on an effective thermalization beyond the Zeno limit
- URL: http://arxiv.org/abs/2304.05843v2
- Date: Mon, 24 Jul 2023 20:50:52 GMT
- Title: Bounds on an effective thermalization beyond the Zeno limit
- Authors: Guilherme Zambon, Diogo O. Soares-Pinto
- Abstract summary: The quantum Zeno effect has emerged as a widely utilized technique to safeguard classical information stored in quantum systems.
We derive effective Zeno dynamics for any time interval between operations.
These findings enhance our understanding of the practical applicability of the quantum Zeno effect in preserving classical information stored in quantum systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing protocols for preserving information in quantum systems is a
central quest for implementing realistic quantum computation. In this regard,
the quantum Zeno effect has emerged as a widely utilized technique to safeguard
classical information stored in quantum systems. However, existing results
pertaining to this method often assume operations performed infinitely fast on
the system of interest, which only serves as an approximation to real-world
scenarios where the temporal resolution of any experimental apparatus is
inherently finite. In this study, we go beyond this conventional assumption and
derive the effective Zeno dynamics for any time interval between operations.
Our analysis considers a qubit undergoing thermalization, as described by a
generalized amplitude damping channel, while the operations performed consist
of projections onto an orthonormal basis that may or may not coincide with the
pointer basis to which the system is thermalizing. By obtaining the probability
of successfully storing a bit of information after a given time, we investigate
the performance of the protocol in two important scenarios: the limit of many
interventions, with a first-order correction to the Zeno limit, and the limit
of very few interventions. In doing so, we provide valuable insights into the
protocol's performance by establishing bounds on its efficacy. These findings
enhance our understanding of the practical applicability of the quantum Zeno
effect in preserving classical information stored in quantum systems, allowing
for better design and optimization of quantum information processing protocols.
Related papers
- Quantum Advantage: A Single Qubit's Experimental Edge in Classical Data Storage [5.669806907215807]
We implement an experiment on a photonic quantum processor establishing efficacy of the elementary quantum system in classical information storage.
Our work paves the way for immediate applications in near-term quantum technologies.
arXiv Detail & Related papers (2024-03-05T05:09:32Z) - Retrieving non-linear features from noisy quantum states [11.289924445850328]
In this paper, we analyze the feasibility and efficiency of extracting high-order moments from noisy states.
We first show that there exists a quantum protocol capable of accomplishing this task if and only if the underlying noise channel is invertible.
Our work contributes to a deeper understanding of how quantum noise could affect high-order information extraction and provides guidance on how to tackle it.
arXiv Detail & Related papers (2023-09-20T15:28:18Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Accelerating relaxation in Markovian open quantum systems through
quantum reset processes [0.0]
We claim that using quantum reset, a common and important operation in quantum timescales, is able to be accelerated significantly.
This faster relaxation induced by the reset protocol is reminiscent of the quantum Mpemba effect.
Our new strategy to accelerate relaxations may also be applied to closed quantum systems or even some non-Markovian open quantum systems.
arXiv Detail & Related papers (2022-12-21T16:31:27Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Time Series Quantum Reservoir Computing with Weak and Projective
Measurements [0.0]
We show that it is possible to exploit the quantumness of the reservoir and to obtain ideal performance.
One consists in rewinding part of the dynamics determined by the fading memory of the reservoir and storing the corresponding data of the input sequence.
The other employs weak measurements operating online at the trade-off where information can be extracted accurately and without hindering the needed memory.
arXiv Detail & Related papers (2022-05-13T17:57:39Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Finite-Time Quantum Landauer Principle and Quantum Coherence [0.0]
We show that the dissipated heat is lower-bounded by the conventional Landauer cost.
We derive a lower bound for heat dissipation in terms of quantum coherence.
arXiv Detail & Related papers (2021-06-10T13:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.