Quantum Advantage: A Single Qubit's Experimental Edge in Classical Data Storage
- URL: http://arxiv.org/abs/2403.02659v2
- Date: Wed, 09 Oct 2024 12:48:07 GMT
- Title: Quantum Advantage: A Single Qubit's Experimental Edge in Classical Data Storage
- Authors: Chen Ding, Edwin Peter Lobo, Mir Alimuddin, Xiao-Yue Xu, Shuo Zhang, Manik Banik, Wan-Su Bao, He-Liang Huang,
- Abstract summary: We implement an experiment on a photonic quantum processor establishing efficacy of the elementary quantum system in classical information storage.
Our work paves the way for immediate applications in near-term quantum technologies.
- Score: 5.669806907215807
- License:
- Abstract: We implement an experiment on a photonic quantum processor establishing efficacy of the elementary quantum system in classical information storage. The advantage is established by considering a class of simple bipartite games played with the communication resource qubit and classical bit (c-bit), respectively. Conventional wisdom, supported by the no-go theorems of Holevo and Frenkel-Weiner, suggests that such a quantum advantage is unattainable when the sender and receiver share randomness or classical correlations. However, our results reveal a quantum advantage in a scenario devoid of any shared randomness. Our experiment involves the development of a variational triangular polarimeter, enabling the realization of positive operator value measurements crucial for establishing the targeted quantum advantage. Beyond showcasing a robust communication advantage with a single qubit, our work paves the way for immediate applications in near-term quantum technologies. It provides a semi-device-independent certification scheme for quantum encoding-decoding systems and offers an efficient method for information loading and transmission in quantum networks.
Related papers
- Quantum Advantage in Distributed Sensing with Noisy Quantum Networks [37.23288214515363]
We show that quantum advantage in distributed sensing can be achieved with noisy quantum networks.
We show that while entanglement is needed for this quantum advantage, genuine multipartite entanglement is generally unnecessary.
arXiv Detail & Related papers (2024-09-25T16:55:07Z) - Distributed quantum machine learning via classical communication [0.7378853859331619]
We present an experimentally accessible distributed quantum machine learning scheme that integrates quantum processor units via classical communication.
Our results indicate that incorporating classical communication notably improves classification accuracy compared to schemes without communication.
arXiv Detail & Related papers (2024-08-29T08:05:57Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Classical Verification of Quantum Learning [42.362388367152256]
We develop a framework for classical verification of quantum learning.
We propose a new quantum data access model that we call "mixture-of-superpositions" quantum examples.
Our results demonstrate that the potential power of quantum data for learning tasks, while not unlimited, can be utilized by classical agents.
arXiv Detail & Related papers (2023-06-08T00:31:27Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Experimental quantum advantage with quantum coupon collector [10.81907025584207]
We introduce and analyse a quantum coupon collector protocol by employing coherent states and simple linear optical elements.
We show that our protocol can significantly reduce the number of samples needed to learn a specific set compared with the classical limit of the coupon collector problem.
We also discuss the potential values and expansions of the quantum coupon collector by constructing a quantum blind box game.
arXiv Detail & Related papers (2021-12-15T04:54:47Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.