UAV Obstacle Avoidance by Human-in-the-Loop Reinforcement in Arbitrary
3D Environment
- URL: http://arxiv.org/abs/2304.05959v1
- Date: Fri, 7 Apr 2023 01:44:05 GMT
- Title: UAV Obstacle Avoidance by Human-in-the-Loop Reinforcement in Arbitrary
3D Environment
- Authors: Xuyang Li, Jianwu Fang, Kai Du, Kuizhi Mei, and Jianru Xue
- Abstract summary: This paper focuses on the continuous control of the unmanned aerial vehicle (UAV) based on a deep reinforcement learning method.
We propose a deep reinforcement learning (DRL)-based method combined with human-in-the-loop, which allows the UAV to avoid obstacles automatically during flying.
- Score: 17.531224704021273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on the continuous control of the unmanned aerial vehicle
(UAV) based on a deep reinforcement learning method for a large-scale 3D
complex environment. The purpose is to make the UAV reach any target point from
a certain starting point, and the flying height and speed are variable during
navigation. In this work, we propose a deep reinforcement learning (DRL)-based
method combined with human-in-the-loop, which allows the UAV to avoid obstacles
automatically during flying. We design multiple reward functions based on the
relevant domain knowledge to guide UAV navigation. The role of
human-in-the-loop is to dynamically change the reward function of the UAV in
different situations to suit the obstacle avoidance of the UAV better. We
verify the success rate and average step size on urban, rural, and forest
scenarios, and the experimental results show that the proposed method can
reduce the training convergence time and improve the efficiency and accuracy of
navigation tasks. The code is available on the website
https://github.com/Monnalo/UAV_navigation.
Related papers
- Autonomous Decision Making for UAV Cooperative Pursuit-Evasion Game with Reinforcement Learning [50.33447711072726]
This paper proposes a deep reinforcement learning-based model for decision-making in multi-role UAV cooperative pursuit-evasion game.
The proposed method enables autonomous decision-making of the UAVs in pursuit-evasion game scenarios.
arXiv Detail & Related papers (2024-11-05T10:45:30Z) - Reinforcement learning reward function in unmanned aerial vehicle
control tasks [0.0]
The reward function is based on the construction and estimation of the time of simplified trajectories to the target.
The effectiveness of the reward function was tested in a newly developed virtual environment.
arXiv Detail & Related papers (2022-03-20T10:32:44Z) - Advanced Algorithms of Collision Free Navigation and Flocking for
Autonomous UAVs [0.0]
This report contributes towards the state-of-the-art in UAV control for safe autonomous navigation and motion coordination of multi-UAV systems.
The first part of this report deals with single-UAV systems. The complex problem of three-dimensional (3D) collision-free navigation in unknown/dynamic environments is addressed.
The second part of this report addresses safe navigation for multi-UAV systems. Distributed motion coordination methods of multi-UAV systems for flocking and 3D area coverage are developed.
arXiv Detail & Related papers (2021-10-30T03:51:40Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV) offers lots of applications in both commerce and recreation.
We consider the task of tracking UAVs, providing rich information such as location and trajectory.
We propose a dataset, Anti-UAV, with more than 300 video pairs containing over 580k manually annotated bounding boxes.
arXiv Detail & Related papers (2021-01-21T07:00:15Z) - Autonomous UAV Navigation: A DDPG-based Deep Reinforcement Learning
Approach [1.552282932199974]
We propose an autonomous UAV path planning framework using deep reinforcement learning approach.
The objective is to employ a self-trained UAV as a flying mobile unit to reach spatially distributed moving or static targets.
arXiv Detail & Related papers (2020-03-21T19:33:00Z) - Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV
with Deep Reinforcement Learning [46.55077580093577]
How to achieve ubiquitous 3D communication coverage for UAVs in the sky is a new challenge.
We propose a new coverage-aware navigation approach, which exploits the UAV's controllable mobility to design its navigation/trajectory.
We propose a new framework called simultaneous navigation and radio mapping (SNARM), where the UAV's signal measurement is used to train the deep Q network.
arXiv Detail & Related papers (2020-03-17T08:16:14Z) - Learning in the Sky: An Efficient 3D Placement of UAVs [0.8399688944263842]
We propose a learning-based mechanism for the three-dimensional deployment of UAVs assisting terrestrial cellular networks in the downlink.
The problem is modeled as a non-cooperative game among UAVs in satisfaction form.
To solve the game, we utilize a low complexity algorithm, in which unsatisfied UAVs update their locations based on a learning algorithm.
arXiv Detail & Related papers (2020-03-02T15:16:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.