論文の概要: SpectralDiff: A Generative Framework for Hyperspectral Image
Classification with Diffusion Models
- arxiv url: http://arxiv.org/abs/2304.05961v2
- Date: Fri, 1 Sep 2023 04:09:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-04 16:50:40.873702
- Title: SpectralDiff: A Generative Framework for Hyperspectral Image
Classification with Diffusion Models
- Title(参考訳): SpectralDiff:拡散モデルを用いたハイパースペクトル画像分類のための生成フレームワーク
- Authors: Ning Chen, Jun Yue, Leyuan Fang, Shaobo Xia
- Abstract要約: 拡散モデルを用いたHSI分類のための生成フレームワーク(SpectralDiff)を提案する。
SpectralDiffは、高次元および高冗長なデータの分布情報を効果的にマイニングする。
3つの公開HSIデータセットの実験により、提案手法は最先端の手法よりも優れた性能が得られることを示した。
- 参考スコア(独自算出の注目度): 18.391049303136715
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral Image (HSI) classification is an important issue in remote
sensing field with extensive applications in earth science. In recent years, a
large number of deep learning-based HSI classification methods have been
proposed. However, existing methods have limited ability to handle
high-dimensional, highly redundant, and complex data, making it challenging to
capture the spectral-spatial distributions of data and relationships between
samples. To address this issue, we propose a generative framework for HSI
classification with diffusion models (SpectralDiff) that effectively mines the
distribution information of high-dimensional and highly redundant data by
iteratively denoising and explicitly constructing the data generation process,
thus better reflecting the relationships between samples. The framework
consists of a spectral-spatial diffusion module, and an attention-based
classification module. The spectral-spatial diffusion module adopts forward and
reverse spectral-spatial diffusion processes to achieve adaptive construction
of sample relationships without requiring prior knowledge of graphical
structure or neighborhood information. It captures spectral-spatial
distribution and contextual information of objects in HSI and mines
unsupervised spectral-spatial diffusion features within the reverse diffusion
process. Finally, these features are fed into the attention-based
classification module for per-pixel classification. The diffusion features can
facilitate cross-sample perception via reconstruction distribution, leading to
improved classification performance. Experiments on three public HSI datasets
demonstrate that the proposed method can achieve better performance than
state-of-the-art methods. For the sake of reproducibility, the source code of
SpectralDiff will be publicly available at
https://github.com/chenning0115/SpectralDiff.
- Abstract(参考訳): ハイパースペクトル画像(HSI)分類はリモートセンシング分野において重要な問題であり、地球科学に広く応用されている。
近年,深層学習に基づくhsi分類法が多数提案されている。
しかし、既存の手法では高次元、高冗長、複雑なデータを扱う能力が限られており、データのスペクトル空間分布とサンプル間の関係を捉えることは困難である。
そこで本研究では,高次元および高冗長なデータの分布情報を反復的に復調し,データ生成過程を明示的に構築することにより効果的にマイニングする拡散モデル(SpectralDiff)を用いたHSI分類のための生成フレームワークを提案する。
このフレームワークはスペクトル空間拡散モジュールと注意に基づく分類モジュールで構成される。
スペクトル空間拡散モジュールは、フォワードおよびリバーススペクトル空間拡散プロセスを採用し、グラフィカル構造や近傍情報の事前知識を必要とせずにサンプル関係を適応的に構築する。
hsi内の物体のスペクトル空間分布と文脈情報を捉え、逆拡散過程における非教師なしスペクトル空間拡散の特徴を捉えている。
最後に、これらの機能はピクセル単位の分類のための注意に基づく分類モジュールに供給される。
拡散特性は再構成分布を介してクロスサンプル知覚を促進し,分類性能の向上に繋がる。
3つの公開HSIデータセットの実験により、提案手法は最先端の手法よりも優れた性能が得られることを示した。
再現性のために、SpectralDiffのソースコードはhttps://github.com/chenning0115/SpectralDiffで公開されている。
関連論文リスト
- Hierarchical Attention and Parallel Filter Fusion Network for Multi-Source Data Classification [33.26466989592473]
マルチソースデータ分類のための階層的注意と並列フィルタ融合ネットワークを提案する。
提案手法は,各データセットの総合精度(OA)の91.44%と80.51%を達成する。
論文 参考訳(メタデータ) (2024-08-22T23:14:22Z) - Spectral Graph Reasoning Network for Hyperspectral Image Classification [0.43512163406551996]
畳み込みニューラルネットワーク(CNN)は、ハイパースペクトル画像(HSI)分類において顕著な性能を達成した。
本稿では、2つの重要なモジュールからなるスペクトルグラフ推論ネットワーク(SGR)学習フレームワークを提案する。
2つのHSIデータセットの実験により、提案したアーキテクチャが分類精度を大幅に改善できることが示されている。
論文 参考訳(メタデータ) (2024-07-02T20:29:23Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
我々は拡散と変圧器技術を組み合わせたDiffSpectralNetと呼ばれる新しいネットワークを提案する。
まず,拡散モデルに基づく教師なし学習フレームワークを用いて,高レベル・低レベルのスペクトル空間的特徴を抽出する。
この拡散法はスペクトル空間の特徴を多様かつ有意義に抽出し,HSI分類の改善につながる。
論文 参考訳(メタデータ) (2023-10-29T15:26:37Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
単純コンプレックスは、マルチウェイ依存によるデータのモデリングに有効である。
我々は、単純なデータを処理するための対照的な自己教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2023-09-14T00:40:07Z) - Boosting the Generalization Ability for Hyperspectral Image Classification using Spectral-spatial Axial Aggregation Transformer [14.594398447576188]
ハイパースペクトル画像分類(HSIC)タスクでは、最も一般的に使われているモデル検証パラダイムは、画素単位のランダムサンプリングによってトレーニング・テストデータセットを分割することである。
私たちの実験では、トレーニングとテストデータセットが多くの情報を共有しているため、高い精度が達成できたことが分かりました。
本稿では,データセット分割間の一般化を保ったスペクトル-空間軸アグリゲーション変換器モデルSaaFormerを提案する。
論文 参考訳(メタデータ) (2023-06-29T07:55:43Z) - DDS2M: Self-Supervised Denoising Diffusion Spatio-Spectral Model for
Hyperspectral Image Restoration [103.79030498369319]
ハイパースペクトル画像復元のための自己教師付き拡散モデルを提案する。
textttDDS2Mは、既存の拡散法と比較して、より強力な一般化能力を持っている。
HSIのノイズ除去、ノイズ除去、様々なHSIの超解像実験は、既存のタスク固有状態よりもtextttDDS2Mの方が優れていることを示した。
論文 参考訳(メタデータ) (2023-03-12T14:57:04Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
我々は、通過する太陽系外惑星のスペクトルデータを解析するための教師なし手法に焦点をあてる。
スペクトルデータには、適切な低次元表現を要求する高い相関関係があることが示される。
主成分に基づく興味深い構造、すなわち、異なる化学状態に対応する明確に定義された分岐を明らかにする。
論文 参考訳(メタデータ) (2022-01-07T22:26:33Z) - SpectralFormer: Rethinking Hyperspectral Image Classification with
Transformers [91.09957836250209]
ハイパースペクトル(HS)画像は、ほぼ連続したスペクトル情報によって特徴づけられる。
CNNは、HS画像分類において強力な特徴抽出器であることが証明されている。
我々は、HS画像分類のためのulSpectralFormerと呼ばれる新しいバックボーンネットワークを提案する。
論文 参考訳(メタデータ) (2021-07-07T02:59:21Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
畳み込みニューラルネットワークは、ハイパースペクトル画像分類に広く応用されている。
近年の手法は空間トポロジのグラフ畳み込みによってこの問題に対処しようとしている。
論文 参考訳(メタデータ) (2021-06-26T06:24:51Z) - Spectral Pyramid Graph Attention Network for Hyperspectral Image
Classification [5.572542792318872]
畳み込みニューラルネットワーク(CNN)は、ハイパースペクトル画像(HSI)分類において大きな進歩を遂げている。
標準畳み込みカーネルは、データポイント間の本質的な接続を無視し、結果として、領域のデラインが貧弱になり、小さなスプリアス予測がもたらされる。
本稿では,これらの2つの問題に明示的に対処する新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-01-20T13:49:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。