論文の概要: Spatial-Spectral Diffusion Contrastive Representation Network for Hyperspectral Image Classification
- arxiv url: http://arxiv.org/abs/2502.19699v1
- Date: Thu, 27 Feb 2025 02:34:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:57:48.229100
- Title: Spatial-Spectral Diffusion Contrastive Representation Network for Hyperspectral Image Classification
- Title(参考訳): ハイパースペクトル画像分類のための空間スペクトル拡散コントラスト表現ネットワーク
- Authors: Yimin Zhu, Linlin Xu,
- Abstract要約: 本稿では,空間スペクトル拡散コントラスト表現ネットワーク(DiffCRN)を提案する。
DiffCRNは、高スペクトル画像分類のための拡散確率モデル(DDPM)とコントラスト学習(CL)の組み合わせに基づく。
広く使われている4つのHSIデータセットを用いて実験を行い、提案したDiffCRNの性能改善を実証した。
- 参考スコア(独自算出の注目度): 8.600534616819333
- License:
- Abstract: Although efficient extraction of discriminative spatial-spectral features is critical for hyperspectral images classification (HSIC), it is difficult to achieve these features due to factors such as the spatial-spectral heterogeneity and noise effect. This paper presents a Spatial-Spectral Diffusion Contrastive Representation Network (DiffCRN), based on denoising diffusion probabilistic model (DDPM) combined with contrastive learning (CL) for HSIC, with the following characteristics. First,to improve spatial-spectral feature representation, instead of adopting the UNets-like structure which is widely used for DDPM, we design a novel staged architecture with spatial self-attention denoising module (SSAD) and spectral group self-attention denoising module (SGSAD) in DiffCRN with improved efficiency for spectral-spatial feature learning. Second, to improve unsupervised feature learning efficiency, we design new DDPM model with logarithmic absolute error (LAE) loss and CL that improve the loss function effectiveness and increase the instance-level and inter-class discriminability. Third, to improve feature selection, we design a learnable approach based on pixel-level spectral angle mapping (SAM) for the selection of time steps in the proposed DDPM model in an adaptive and automatic manner. Last, to improve feature integration and classification, we design an Adaptive weighted addition modul (AWAM) and Cross time step Spectral-Spatial Fusion Module (CTSSFM) to fuse time-step-wise features and perform classification. Experiments conducted on widely used four HSI datasets demonstrate the improved performance of the proposed DiffCRN over the classical backbone models and state-of-the-art GAN, transformer models and other pretrained methods. The source code and pre-trained model will be made available publicly.
- Abstract(参考訳): 超スペクトル画像分類(HSIC)では,空間スペクトル特徴の効率的な抽出が重要であるが,空間スペクトルの不均一性やノイズ効果などの要因により,これらの特徴を達成することは困難である。
本稿では,DiffCRN(Spatial-Spectral Diffusion Contrastive Representation Network)を提案する。
まず、DDPMに広く使われているUNetsのような構造を採用する代わりに、DiffCRNで空間自己注意聴取モジュール(SSAD)とスペクトル群自己注意聴取モジュール(SGSAD)を備えた新しいステージドアーキテクチャを設計し、スペクトル空間特徴学習の効率を向上する。
第2に、教師なし特徴学習効率を改善するために、対数絶対誤差(LAE)損失を持つ新しいDDPMモデルとCLを設計し、損失関数の有効性を改善し、インスタンスレベルおよびクラス間識別性を向上する。
第3に、特徴選択を改善するために、提案したDDPMモデルにおける時間ステップの選択を適応的かつ自動的にピクセルレベルのスペクトル角マッピング(SAM)に基づいて学習可能なアプローチを設計する。
最後に,AWAM(Adaptive weighted addition modul)とCTSSFM(Cross Time Step Spectral-Spatial Fusion Module)を設計した。
広く使われている4つのHSIデータセットの実験では、古典的なバックボーンモデルや最先端のGAN、トランスフォーマーモデル、その他の事前訓練された手法よりも、提案されたDiffCRNの性能が改善された。
ソースコードと事前訓練されたモデルは一般公開される予定だ。
関連論文リスト
- DiffFormer: a Differential Spatial-Spectral Transformer for Hyperspectral Image Classification [3.271106943956333]
超スペクトル画像分類(HSIC)は、高次元データをスペクトル情報と空間情報で分析する可能性から注目されている。
本稿では、スペクトル冗長性や空間不連続性といったHSICの固有の課題に対処するために、差分空間スペクトル変換器(DiffFormer)を提案する。
ベンチマークハイパースペクトルデータセットの実験は、分類精度、計算効率、一般化可能性の観点から、DiffFormerの優位性を示す。
論文 参考訳(メタデータ) (2024-12-23T07:21:41Z) - Hyperspectral Images Efficient Spatial and Spectral non-Linear Model with Bidirectional Feature Learning [7.06787067270941]
本稿では,分類精度を高めつつ,データ量を大幅に削減する新しいフレームワークを提案する。
本モデルでは,空間特徴解析のための特殊ブロックによって補完されるスペクトル特徴を効率よく抽出するために,双方向逆畳み込みニューラルネットワーク(CNN)を用いる。
論文 参考訳(メタデータ) (2024-11-29T23:32:26Z) - Spectral-Spatial Transformer with Active Transfer Learning for Hyperspectral Image Classification [3.446873355279676]
ハイパースペクトル画像(HSI)の分類は、高スペクトル次元と限られたラベル付きデータのために難しい課題である。
本研究では,空間スペクトル変換器(SST)と能動学習プロセスを統合し,効率的なHSI分類を実現するための多段階能動移動学習(ATL)フレームワークを提案する。
HSIデータセットのベンチマーク実験では、SST-ATLフレームワークが既存のCNNやSSTベースの手法よりも大幅に優れていることが示されている。
論文 参考訳(メタデータ) (2024-11-27T07:53:39Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
本稿では,DAM(Dual Attention Module)と呼ばれる軽量モジュールを提案する。
フレームアテンション機構を使用して、最も重要なフレームを識別し、スケルトンアテンション機構を使用して、最小パラメータとフロップで固定されたパーティション間の広範な関係をキャプチャする。
論文 参考訳(メタデータ) (2024-06-05T06:18:03Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - DiffSpectralNet : Unveiling the Potential of Diffusion Models for
Hyperspectral Image Classification [6.521187080027966]
我々は拡散と変圧器技術を組み合わせたDiffSpectralNetと呼ばれる新しいネットワークを提案する。
まず,拡散モデルに基づく教師なし学習フレームワークを用いて,高レベル・低レベルのスペクトル空間的特徴を抽出する。
この拡散法はスペクトル空間の特徴を多様かつ有意義に抽出し,HSI分類の改善につながる。
論文 参考訳(メタデータ) (2023-10-29T15:26:37Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
単一ハイパースペクトル像超解像(単一HSI-SR)は、低分解能観測から高分解能ハイパースペクトル像を復元することを目的としている。
本稿では,1つのHSI-SRの繰り返し精製構造を持つESSA注目組込みトランスフォーマネットワークであるESSAformerを提案する。
論文 参考訳(メタデータ) (2023-07-26T07:45:14Z) - SpectralDiff: A Generative Framework for Hyperspectral Image
Classification with Diffusion Models [18.391049303136715]
拡散モデルを用いたHSI分類のための生成フレームワーク(SpectralDiff)を提案する。
SpectralDiffは、高次元および高冗長なデータの分布情報を効果的にマイニングする。
3つの公開HSIデータセットの実験により、提案手法は最先端の手法よりも優れた性能が得られることを示した。
論文 参考訳(メタデータ) (2023-04-12T16:32:34Z) - DDS2M: Self-Supervised Denoising Diffusion Spatio-Spectral Model for
Hyperspectral Image Restoration [103.79030498369319]
ハイパースペクトル画像復元のための自己教師付き拡散モデルを提案する。
textttDDS2Mは、既存の拡散法と比較して、より強力な一般化能力を持っている。
HSIのノイズ除去、ノイズ除去、様々なHSIの超解像実験は、既存のタスク固有状態よりもtextttDDS2Mの方が優れていることを示した。
論文 参考訳(メタデータ) (2023-03-12T14:57:04Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
HSI再構成のための高分解能デュアルドメイン学習ネットワーク(HDNet)を提案する。
一方、高効率な特徴融合によるHR空間スペクトルアテンションモジュールは、連続的かつ微細な画素レベルの特徴を提供する。
一方、HSI再構成のために周波数領域学習(FDL)を導入し、周波数領域の差を狭める。
論文 参考訳(メタデータ) (2022-03-04T06:37:45Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。