論文の概要: Auditing ICU Readmission Rates in an Clinical Database: An Analysis of
Risk Factors and Clinical Outcomes
- arxiv url: http://arxiv.org/abs/2304.05986v1
- Date: Wed, 12 Apr 2023 17:09:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-13 14:16:48.246894
- Title: Auditing ICU Readmission Rates in an Clinical Database: An Analysis of
Risk Factors and Clinical Outcomes
- Title(参考訳): 臨床データベースにおけるICU受入率の監査:リスク要因と臨床成績の分析
- Authors: Shaina Raza
- Abstract要約: 本研究では,30日間の読解問題における臨床データ分類のための機械学習パイプラインを提案する。
公正監査は、平等機会、予測パリティ、偽陽性率パリティ、偽陰性率パリティ基準の格差を明らかにする。
この研究は、人工知能(AI)システムのバイアスと公平性に対処するために、研究者、政策立案者、実践者の協力的努力の必要性を示唆している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents a machine learning (ML) pipeline for clinical data
classification in the context of a 30-day readmission problem, along with a
fairness audit on subgroups based on sensitive attributes. A range of ML models
are used for classification and the fairness audit is conducted on the model
predictions. The fairness audit uncovers disparities in equal opportunity,
predictive parity, false positive rate parity, and false negative rate parity
criteria on the MIMIC III dataset based on attributes such as gender,
ethnicity, language, and insurance group. The results identify disparities in
the model's performance across different groups and highlights the need for
better fairness and bias mitigation strategies. The study suggests the need for
collaborative efforts among researchers, policymakers, and practitioners to
address bias and fairness in artificial intelligence (AI) systems.
- Abstract(参考訳): 本研究では,30日間の読解問題の文脈における臨床データ分類のための機械学習(ML)パイプラインと,感度特性に基づくサブグループの公正度監査を提案する。
分類にはmlモデルの範囲が用いられ、モデル予測に基づいて公平性監査が行われる。
公正監査は、男女、民族、言語、保険グループといった属性に基づいて、MIMIC IIIデータセットにおける平等機会、予測パリティ、偽陽性率パリティ、偽ネガティブレートパリティ基準の格差を明らかにする。
結果は、異なるグループ間でのモデルの性能の相違を特定し、より良い公平性とバイアス軽減戦略の必要性を強調する。
この研究は、人工知能(AI)システムのバイアスと公平性に対処するために、研究者、政策立案者、実践者の協力的努力の必要性を示唆している。
関連論文リスト
- Using Backbone Foundation Model for Evaluating Fairness in Chest Radiography Without Demographic Data [2.7436483977171333]
本研究の目的は,基礎モデルのバックボーンを埋め込み抽出器として用いることの有効性を検討することである。
我々は,これらのグループを,前処理,内処理,評価など,様々な段階のバイアス軽減に活用することを提案する。
論文 参考訳(メタデータ) (2024-08-28T20:35:38Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - An AI-Guided Data Centric Strategy to Detect and Mitigate Biases in
Healthcare Datasets [32.25265709333831]
我々は、小さなサンプルサイズ(AEquity)で異なるグループをいかに容易に学習するかを調査することによって、データセットバイアスを評価するために、データ中心、モデルに依存しないタスク非依存のアプローチを生成する。
次に、サブポピュレーション全体にわたるAEq値の体系的分析を適用し、医療における2つの既知の事例において、人種的偏見の特定と顕在化を図った。
AEqは、医療データセットのバイアスを診断し、修正することで、エクイティの前進に適用できる、新しく広く適用可能なメトリクスである。
論文 参考訳(メタデータ) (2023-11-06T17:08:41Z) - The Role of Subgroup Separability in Group-Fair Medical Image
Classification [18.29079361470428]
診断などの系統的バイアスを伴うデータを用いて, サブグループ分離性, サブグループ分離性, 性能劣化の関係について検討した。
私たちの発見は、モデルがどのように偏見を抱くかという問題に新たな光を当て、公正な医療画像AIの開発に重要な洞察を与えました。
論文 参考訳(メタデータ) (2023-07-06T06:06:47Z) - Auditing Algorithmic Fairness in Machine Learning for Health with
Severity-Based LOGAN [70.76142503046782]
臨床予測タスクにおいて,局所バイアスを自動検出するSLOGANを用いて,機械学習ベースの医療ツールを補足することを提案する。
LOGANは、患者の重症度と過去の医療史における集団バイアス検出を文脈化することにより、既存のツールであるLOcal Group biAs detectioNに適応する。
SLOGANは, クラスタリング品質を維持しながら, 患者群の75%以上において, SLOGANよりも高い公平性を示す。
論文 参考訳(メタデータ) (2022-11-16T08:04:12Z) - Error Parity Fairness: Testing for Group Fairness in Regression Tasks [5.076419064097733]
この研究は、回帰フェアネスの概念としてエラーパリティを示し、グループフェアネスを評価するためのテスト手法を導入する。
続いて、いくつかの統計上のグループを比較し、格差を探索し、影響されたグループを特定するのに適した置換テストが実施される。
全体として、提案された回帰公正性テスト手法は、公正な機械学習文献のギャップを埋め、より大きなアカウンタビリティ評価とアルゴリズム監査の一部として機能する可能性がある。
論文 参考訳(メタデータ) (2022-08-16T17:47:20Z) - Fair Machine Learning in Healthcare: A Review [90.22219142430146]
我々は、機械学習と医療格差における公正性の交差を分析する。
機械学習の観点から、関連する公正度メトリクスを批判的にレビューする。
本稿では,医療における倫理的かつ公平なMLアプリケーション開発を約束する新たな研究指針を提案する。
論文 参考訳(メタデータ) (2022-06-29T04:32:10Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - An Empirical Characterization of Fair Machine Learning For Clinical Risk
Prediction [7.945729033499554]
臨床的意思決定を導くための機械学習の使用は、既存の健康格差を悪化させる可能性がある。
近年のいくつかの研究は、この問題をアルゴリズム的公正(英語版)の問題と位置づけている。
我々は,グループフェアネス違反の罰則がモデル性能とグループフェアネスの一連の尺度に与える影響を実験的に評価する。
論文 参考訳(メタデータ) (2020-07-20T17:46:31Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - Predictive Modeling of ICU Healthcare-Associated Infections from
Imbalanced Data. Using Ensembles and a Clustering-Based Undersampling
Approach [55.41644538483948]
本研究は,集中治療室における危険因子の同定と医療関連感染症の予測に焦点をあてる。
感染発生率の低減に向けた意思決定を支援することを目的とする。
論文 参考訳(メタデータ) (2020-05-07T16:13:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。