論文の概要: The Role of Subgroup Separability in Group-Fair Medical Image
Classification
- arxiv url: http://arxiv.org/abs/2307.02791v1
- Date: Thu, 6 Jul 2023 06:06:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 15:04:03.349725
- Title: The Role of Subgroup Separability in Group-Fair Medical Image
Classification
- Title(参考訳): グループフェア医療画像分類におけるサブグループ分離性の役割
- Authors: Charles Jones, M\'elanie Roschewitz, Ben Glocker
- Abstract要約: 診断などの系統的バイアスを伴うデータを用いて, サブグループ分離性, サブグループ分離性, 性能劣化の関係について検討した。
私たちの発見は、モデルがどのように偏見を抱くかという問題に新たな光を当て、公正な医療画像AIの開発に重要な洞察を与えました。
- 参考スコア(独自算出の注目度): 18.29079361470428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate performance disparities in deep classifiers. We find that the
ability of classifiers to separate individuals into subgroups varies
substantially across medical imaging modalities and protected characteristics;
crucially, we show that this property is predictive of algorithmic bias.
Through theoretical analysis and extensive empirical evaluation, we find a
relationship between subgroup separability, subgroup disparities, and
performance degradation when models are trained on data with systematic bias
such as underdiagnosis. Our findings shed new light on the question of how
models become biased, providing important insights for the development of fair
medical imaging AI.
- Abstract(参考訳): 深層分類器の性能差を調査した。
分類器が個人をサブグループに分ける能力は, 医用画像のモダリティや保護特性によって大きく異なっており, この特性がアルゴリズムバイアスの予測であることを示す。
理論解析と広範な経験的評価を通じて,下位診断などの体系的バイアスのあるデータを用いてモデルが訓練された場合,サブグループ分離可能性,サブグループ格差,パフォーマンス低下の関係を見出した。
私たちの発見は、モデルがどのように偏見を抱くかという問題に新たな光を当て、公正な医療画像AIの開発に重要な洞察を与えました。
関連論文リスト
- Using Backbone Foundation Model for Evaluating Fairness in Chest Radiography Without Demographic Data [2.7436483977171333]
本研究の目的は,基礎モデルのバックボーンを埋め込み抽出器として用いることの有効性を検討することである。
我々は,これらのグループを,前処理,内処理,評価など,様々な段階のバイアス軽減に活用することを提案する。
論文 参考訳(メタデータ) (2024-08-28T20:35:38Z) - On Biases in a UK Biobank-based Retinal Image Classification Model [0.0]
本研究は,イギリスバイオバンクの眼底網膜画像に違いが存在するかどうかを,これらの画像上での疾患分類モデルの評価とトレーニングにより検討する。
モデル全体の性能は高いが、大きな違いがある。
これらの手法は, 偏見に適応したより良い偏見緩和法の必要性を浮き彫りにして, 公平性を高めることができないことが判明した。
論文 参考訳(メタデータ) (2024-07-30T10:50:07Z) - A structured regression approach for evaluating model performance across intersectional subgroups [53.91682617836498]
分散評価(disaggregated evaluation)は、AIフェアネスアセスメントにおける中心的なタスクであり、AIシステムのさまざまなサブグループ間でのパフォーマンスを測定することを目的としている。
非常に小さなサブグループであっても,信頼性の高いシステム性能推定値が得られることを示す。
論文 参考訳(メタデータ) (2024-01-26T14:21:45Z) - (Predictable) Performance Bias in Unsupervised Anomaly Detection [3.826262429926079]
教師なし異常検出(UAD)モデルは、疾患検出の重要な第1ステップを支援することを約束する。
本研究は, ある集団群に対して, UADモデルの異なる性能を定量的に評価した。
論文 参考訳(メタデータ) (2023-09-25T14:57:43Z) - Auditing ICU Readmission Rates in an Clinical Database: An Analysis of
Risk Factors and Clinical Outcomes [0.0]
本研究では,30日間の読解問題における臨床データ分類のための機械学習パイプラインを提案する。
公正監査は、平等機会、予測パリティ、偽陽性率パリティ、偽陰性率パリティ基準の格差を明らかにする。
この研究は、人工知能(AI)システムのバイアスと公平性に対処するために、研究者、政策立案者、実践者の協力的努力の必要性を示唆している。
論文 参考訳(メタデータ) (2023-04-12T17:09:38Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - Explaining medical AI performance disparities across sites with
confounder Shapley value analysis [8.785345834486057]
マルチサイト評価は、このような格差を診断する鍵となる。
本フレームワークは,各種類のバイアスが全体の性能差に与える影響を定量化する手法を提供する。
本研究は, 深部学習モデルを用いて気胸の有無を検知し, その有用性を実証するものである。
論文 参考訳(メタデータ) (2021-11-12T18:54:10Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
本研究では,深層学習に基づく医療画像解析システムにおけるバイアスの同時緩和と検出を目的としたマルチタスク・トレーニング戦略を提案する。
具体的には,バイアスに対する識別モジュールと,ベース分類モデルにおける不公平性を予測するクリティカルモジュールを追加することを提案する。
大規模で利用可能な皮膚病変データセットのフレームワークを評価します。
論文 参考訳(メタデータ) (2021-03-07T03:10:32Z) - LOGAN: Local Group Bias Detection by Clustering [86.38331353310114]
コーパスレベルでバイアスを評価することは、モデルにバイアスがどのように埋め込まれているかを理解するのに十分ではない、と我々は主張する。
クラスタリングに基づく新しいバイアス検出手法であるLOGANを提案する。
毒性分類および対象分類タスクの実験は、LOGANが局所領域のバイアスを特定することを示している。
論文 参考訳(メタデータ) (2020-10-06T16:42:51Z) - Temporal Phenotyping using Deep Predictive Clustering of Disease
Progression [97.88605060346455]
我々は、時系列データをクラスタリングするためのディープラーニングアプローチを開発し、各クラスタは、同様の将来的な結果を共有する患者から構成される。
2つの実世界のデータセットに対する実験により、我々のモデルは最先端のベンチマークよりも優れたクラスタリング性能が得られることが示された。
論文 参考訳(メタデータ) (2020-06-15T20:48:43Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。