Confident Object Detection via Conformal Prediction and Conformal Risk
Control: an Application to Railway Signaling
- URL: http://arxiv.org/abs/2304.06052v2
- Date: Mon, 17 Apr 2023 08:13:29 GMT
- Title: Confident Object Detection via Conformal Prediction and Conformal Risk
Control: an Application to Railway Signaling
- Authors: L\'eo and\'eol (IMT, ANITI), Thomas Fel, Florence De Grancey, Luca
Mossina
- Abstract summary: We demonstrate the use of the conformal prediction framework to construct reliable predictors for detecting railway signals.
Our approach is based on a novel dataset that includes images taken from the perspective of a train operator and state-of-the-art object detectors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deploying deep learning models in real-world certified systems requires the
ability to provide confidence estimates that accurately reflect their
uncertainty. In this paper, we demonstrate the use of the conformal prediction
framework to construct reliable and trustworthy predictors for detecting
railway signals. Our approach is based on a novel dataset that includes images
taken from the perspective of a train operator and state-of-the-art object
detectors. We test several conformal approaches and introduce a new method
based on conformal risk control. Our findings demonstrate the potential of the
conformal prediction framework to evaluate model performance and provide
practical guidance for achieving formally guaranteed uncertainty bounds.
Related papers
- Trustworthy Classification through Rank-Based Conformal Prediction Sets [9.559062601251464]
We propose a novel conformal prediction method that employs a rank-based score function suitable for classification models.
Our approach constructs prediction sets that achieve the desired coverage rate while managing their size.
Our contributions include a novel conformal prediction method, theoretical analysis, and empirical evaluation.
arXiv Detail & Related papers (2024-07-05T10:43:41Z) - Onboard Out-of-Calibration Detection of Deep Learning Models using Conformal Prediction [4.856998175951948]
We show that conformal prediction algorithms are related to the uncertainty of the deep learning model and that this relation can be used to detect if the deep learning model is out-of-calibration.
An out-of-calibration detection procedure relating the model uncertainty and the average size of the conformal prediction set is presented.
arXiv Detail & Related papers (2024-05-04T11:05:52Z) - Certified Human Trajectory Prediction [66.1736456453465]
Tray prediction plays an essential role in autonomous vehicles.
We propose a certification approach tailored for the task of trajectory prediction.
We address the inherent challenges associated with trajectory prediction, including unbounded outputs, and mutli-modality.
arXiv Detail & Related papers (2024-03-20T17:41:35Z) - Forking Uncertainties: Reliable Prediction and Model Predictive Control
with Sequence Models via Conformal Risk Control [40.918012779935246]
We introduce a novel post-hoc calibration procedure that operates on the predictions produced by any pre-designed probabilistic forecaster to yield reliable error bars.
Unlike the state of the art, PTS-CRC can satisfy reliability definitions beyond coverage.
We experimentally validate the performance of PTS-CRC prediction and control by studying a number of use cases in the context of wireless networking.
arXiv Detail & Related papers (2023-10-16T11:35:41Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Conformal Prediction for Trustworthy Detection of Railway Signals [0.0]
We present an application of conformal prediction, a form of uncertainty quantification with guarantees, to the detection of railway signals.
We work with a novel exploratory dataset of images taken from the perspective of a train operator.
arXiv Detail & Related papers (2023-01-26T14:40:49Z) - Reliability-Aware Prediction via Uncertainty Learning for Person Image
Retrieval [51.83967175585896]
UAL aims at providing reliability-aware predictions by considering data uncertainty and model uncertainty simultaneously.
Data uncertainty captures the noise" inherent in the sample, while model uncertainty depicts the model's confidence in the sample's prediction.
arXiv Detail & Related papers (2022-10-24T17:53:20Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
We show how uncertainty estimation can be leveraged to enable safety critical image segmentation in autonomous driving.
We introduce a new uncertainty measure based on disagreeing predictions as measured by a dissimilarity function.
We show experimentally that our proposed approach is much less computationally intensive at inference time than competing methods.
arXiv Detail & Related papers (2021-05-28T09:23:05Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Evaluating the Safety of Deep Reinforcement Learning Models using
Semi-Formal Verification [81.32981236437395]
We present a semi-formal verification approach for decision-making tasks based on interval analysis.
Our method obtains comparable results over standard benchmarks with respect to formal verifiers.
Our approach allows to efficiently evaluate safety properties for decision-making models in practical applications.
arXiv Detail & Related papers (2020-10-19T11:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.