Credal Prediction based on Relative Likelihood
- URL: http://arxiv.org/abs/2505.22332v1
- Date: Wed, 28 May 2025 13:20:20 GMT
- Title: Credal Prediction based on Relative Likelihood
- Authors: Timo Löhr, Paul Hofman, Felix Mohr, Eyke Hüllermeier,
- Abstract summary: We propose a theoretically grounded approach to credal prediction based on the statistical notion of relative likelihood.<n>We tackle the problem of approximating credal sets defined in this way by means of suitably modified ensemble learning techniques.
- Score: 24.307076055306148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictions in the form of sets of probability distributions, so-called credal sets, provide a suitable means to represent a learner's epistemic uncertainty. In this paper, we propose a theoretically grounded approach to credal prediction based on the statistical notion of relative likelihood: The target of prediction is the set of all (conditional) probability distributions produced by the collection of plausible models, namely those models whose relative likelihood exceeds a specified threshold. This threshold has an intuitive interpretation and allows for controlling the trade-off between correctness and precision of credal predictions. We tackle the problem of approximating credal sets defined in this way by means of suitably modified ensemble learning techniques. To validate our approach, we illustrate its effectiveness by experiments on benchmark datasets demonstrating superior uncertainty representation without compromising predictive performance. We also compare our method against several state-of-the-art baselines in credal prediction.
Related papers
- Conformal Prediction Sets with Improved Conditional Coverage using Trust Scores [52.92618442300405]
It is impossible to achieve exact, distribution-free conditional coverage in finite samples.<n>We propose an alternative conformal prediction algorithm that targets coverage where it matters most.
arXiv Detail & Related papers (2025-01-17T12:01:56Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.<n>Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.<n>We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Trustworthy Classification through Rank-Based Conformal Prediction Sets [9.559062601251464]
We propose a novel conformal prediction method that employs a rank-based score function suitable for classification models.
Our approach constructs prediction sets that achieve the desired coverage rate while managing their size.
Our contributions include a novel conformal prediction method, theoretical analysis, and empirical evaluation.
arXiv Detail & Related papers (2024-07-05T10:43:41Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Robust Conformal Prediction Using Privileged Information [17.886554223172517]
We develop a method to generate prediction sets with a guaranteed coverage rate that is robust to corruptions in the training data.<n>Our approach builds on conformal prediction, a powerful framework to construct prediction sets that are valid under the i.i.d assumption.
arXiv Detail & Related papers (2024-06-08T08:56:47Z) - Conformalized Credal Set Predictors [12.549746646074071]
Credal sets are sets of probability distributions that are considered as candidates for an imprecisely known ground-truth distribution.
We make use of conformal prediction for learning credal set predictors.
We demonstrate the applicability of our method to natural language inference.
arXiv Detail & Related papers (2024-02-16T14:30:12Z) - Model-agnostic variable importance for predictive uncertainty: an entropy-based approach [1.912429179274357]
We show how existing methods in explainability can be extended to uncertainty-aware models.
We demonstrate the utility of these approaches to understand both the sources of uncertainty and their impact on model performance.
arXiv Detail & Related papers (2023-10-19T15:51:23Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
We propose feature conformal prediction, which extends the scope of conformal prediction to semantic feature spaces.
From a theoretical perspective, we demonstrate that feature conformal prediction provably outperforms regular conformal prediction under mild assumptions.
Our approach could be combined with not only vanilla conformal prediction, but also other adaptive conformal prediction methods.
arXiv Detail & Related papers (2022-10-01T02:57:37Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.