論文の概要: TextANIMAR: Text-based 3D Animal Fine-Grained Retrieval
- arxiv url: http://arxiv.org/abs/2304.06053v1
- Date: Wed, 12 Apr 2023 10:19:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-14 16:47:21.538449
- Title: TextANIMAR: Text-based 3D Animal Fine-Grained Retrieval
- Title(参考訳): TextANIMAR:テキストベースの3D動物の細粒度検索
- Authors: Trung-Nghia Le, Tam V. Nguyen c, Minh-Quan Le, Trong-Thuan Nguyen,
Viet-Tham Huynh, Trong-Le Do, Khanh-Duy Le, Mai-Khiem Tran, Nhat Hoang-Xuan,
Thang-Long Nguyen-Ho, Vinh-Tiep Nguyen, Tuong-Nghiem Diep, Khanh-Duy Ho,
Xuan-Hieu Nguyen, Thien-Phuc Tran, Tuan-Anh Yang, Kim-Phat Tran, Nhu-Vinh
Hoang, Minh-Quang Nguyen, E-Ro Nguyen, Minh-Khoi Nguyen-Nhat, Tuan-An To,
Trung-Truc Huynh-Le, Nham-Tan Nguyen, Hoang-Chau Luong, Truong Hoai Phong,
Nhat-Quynh Le-Pham, Huu-Phuc Pham, Trong-Vu Hoang, Quang-Binh Nguyen,
Hai-Dang Nguyen, Akihiro Sugimoto, Minh-Triet Tran
- Abstract要約: 本稿では,テキストによる3次元動物モデルの微粒化検索に着目した新しいSHRECチャレンジトラックを提案する。
本課題は,3次元オブジェクトとのより直感的なインタラクションを実現するため,実用上有用なアプリケーションを実現する可能性があると考えている。
- 参考スコア(独自算出の注目度): 11.823471044250761
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D object retrieval is an important yet challenging task, which has drawn
more and more attention in recent years. While existing approaches have made
strides in addressing this issue, they are often limited to restricted settings
such as image and sketch queries, which are often unfriendly interactions for
common users. In order to overcome these limitations, this paper presents a
novel SHREC challenge track focusing on text-based fine-grained retrieval of 3D
animal models. Unlike previous SHREC challenge tracks, the proposed task is
considerably more challenging, requiring participants to develop innovative
approaches to tackle the problem of text-based retrieval. Despite the increased
difficulty, we believe that this task has the potential to drive useful
applications in practice and facilitate more intuitive interactions with 3D
objects. Five groups participated in our competition, submitting a total of 114
runs. While the results obtained in our competition are satisfactory, we note
that the challenges presented by this task are far from being fully solved. As
such, we provide insights into potential areas for future research and
improvements. We believe that we can help push the boundaries of 3D object
retrieval and facilitate more user-friendly interactions via vision-language
technologies.
- Abstract(参考訳): 3Dオブジェクトの検索は重要な課題だが、近年はますます注目を集めている。
既存のアプローチではこの問題に対処する努力が続けられているが、画像やスケッチクエリといった制限された設定に制限されることが多い。
これらの制約を克服するため,本研究では,テキストによる3次元動物モデルの詳細な検索に焦点を当てた新しいSHRECチャレンジトラックを提案する。
従来のSHRECの課題トラックとは異なり、提案課題は極めて困難であり、参加者はテキストベースの検索問題に対処するための革新的なアプローチを開発する必要がある。
難易度は高まっているものの,本課題は実用上有用な応用を推進し,より直感的な3Dオブジェクトとの相互作用を促進する可能性があると考えている。
5つのグループがこの大会に参加し、合計114回の出場を果たした。
コンペで得られた結果は満足できるが、この課題が完全に解決されるには程遠いことに留意する。
したがって、将来の研究と改善のための潜在的な領域についての洞察を提供する。
私たちは3dオブジェクト検索の境界を押し上げ、視覚言語技術によるよりユーザーフレンドリーなインタラクションを促進することができると信じています。
関連論文リスト
- V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results [142.5704093410454]
V3Det Challenge 2024は、オブジェクト検出研究の境界を推し進めることを目的としている。
Vast Vocabulary Object DetectionとOpen Vocabulary Object Detectionの2つのトラックで構成されている。
我々は,広い語彙とオープン語彙のオブジェクト検出において,今後の研究の方向性を刺激することを目指している。
論文 参考訳(メタデータ) (2024-06-17T16:58:51Z) - A Survey On Text-to-3D Contents Generation In The Wild [5.875257756382124]
3Dコンテンツ作成は、ゲーム、ロボットシミュレーション、仮想現実など、さまざまなアプリケーションにおいて重要な役割を果たす。
この課題に対処するために、テキストから3D生成技術が、3D生成を自動化するための有望なソリューションとして登場した。
論文 参考訳(メタデータ) (2024-05-15T15:23:22Z) - Generating Human Motion in 3D Scenes from Text Descriptions [60.04976442328767]
本稿では,人間とシーンのインタラクションをテキストで記述した3次元屋内シーンにおけるヒューマンモーション生成の課題に焦点を当てた。
複雑な問題を2つのより管理可能なサブプロブレムに分解する新しい手法を提案する。
対象オブジェクトの言語グラウンド化には、大きな言語モデルのパワーを活用し、モーション生成には、オブジェクト中心のシーン表現を設計する。
論文 参考訳(メタデータ) (2024-05-13T14:30:12Z) - ScanTalk: 3D Talking Heads from Unregistered Scans [13.003073077799835]
スキャンデータを含む任意のトポロジで3次元顔をアニメーションできる新しいフレームワークである textbfScanTalk を提案する。
我々のアプローチは、固定トポロジ制約を克服するためにDiffusionNetアーキテクチャに依存しており、より柔軟でリアルな3Dアニメーションのための有望な道を提供する。
論文 参考訳(メタデータ) (2024-03-16T14:58:58Z) - RHOBIN Challenge: Reconstruction of Human Object Interaction [83.07185402102253]
最初のRHOBINチャレンジ:RHOBINワークショップと連携して人間と物体の相互作用を再構築する。
我々の課題は、単眼のRGB画像から3D再構成する3つのトラックで構成され、困難な相互作用シナリオに対処することに焦点を当てている。
本稿では,課題の設定について述べるとともに,各トラックの入賞方法についてより詳細に述べる。
論文 参考訳(メタデータ) (2024-01-07T23:37:07Z) - SketchANIMAR: Sketch-based 3D Animal Fine-Grained Retrieval [17.286320102183502]
我々は,スケッチクエリを用いたデータセットから関連する3D動物モデルを取得することに焦点を当てた,新しいSHRECチャレンジトラックを紹介した。
本コンテストでは,複雑かつ詳細なスケッチに基づいて,参加者が3Dモデルを取得する必要がある。
8つのチームから満足のいく結果が得られ、204回が実行されます。
論文 参考訳(メタデータ) (2023-04-12T09:40:38Z) - Hindsight is 20/20: Leveraging Past Traversals to Aid 3D Perception [59.2014692323323]
小さな、遠く、あるいは非常に隠蔽された物体は、検出するためのLiDAR点雲に限られた情報があるため、特に困難である。
本稿では,過去データから文脈情報を抽出する,エンドツーエンドのトレーニング可能な新しいフレームワークを提案する。
このフレームワークは現代のほとんどの3D検出アーキテクチャと互換性があり、複数の自律走行データセットの平均精度を大幅に向上させることができる。
論文 参考訳(メタデータ) (2022-03-22T00:58:27Z) - Recovering 3D Human Mesh from Monocular Images: A Survey [49.00136388529404]
単眼画像から人間のポーズと形状を推定することは、コンピュータビジョンにおける長年の問題である。
本調査は, 単分子型3次元メッシュ回収の課題に焦点を当てた。
論文 参考訳(メタデータ) (2022-03-03T18:56:08Z) - L3DAS22 Challenge: Learning 3D Audio Sources in a Real Office
Environment [12.480610577162478]
L3DAS22 Challengeは、3D音声強調と3D音像定位と検出のための機械学習戦略の開発を促進することを目的としている。
この課題はL3DAS21エディションのタスクを改善し拡張する。
論文 参考訳(メタデータ) (2022-02-21T17:05:39Z) - Mobile App Tasks with Iterative Feedback (MoTIF): Addressing Task
Feasibility in Interactive Visual Environments [54.405920619915655]
これまで最大数のインタラクティブ環境向けに自然言語コマンドを用いたデータセットであるMoTIF(Iterative Feedback)を用いたモバイルアプリタスクを紹介します。
MoTIFは、満足できないインタラクティブ環境のための自然言語リクエストを最初に含んでいる。
初期実現可能性分類実験を行い、より豊かな視覚言語表現の必要性を検証し、f1スコア37.3まで到達した。
論文 参考訳(メタデータ) (2021-04-17T14:48:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。