Fast emulation of cosmological density fields based on dimensionality
reduction and supervised machine-learning
- URL: http://arxiv.org/abs/2304.06099v1
- Date: Wed, 12 Apr 2023 18:29:26 GMT
- Title: Fast emulation of cosmological density fields based on dimensionality
reduction and supervised machine-learning
- Authors: Miguel Concei\c{c}\~ao, Alberto Krone-Martins, Antonio da Silva,
\'Angeles Molin\'e
- Abstract summary: We show that it is possible to perform fast dark matter density field emulations with competitive accuracy using simple machine-learning approaches.
New density cubes for different cosmological parameters can be estimated without relying directly on new N-body simulations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: N-body simulations are the most powerful method to study the non-linear
evolution of large-scale structure. However, they require large amounts of
computational resources, making unfeasible their direct adoption in scenarios
that require broad explorations of parameter spaces. In this work, we show that
it is possible to perform fast dark matter density field emulations with
competitive accuracy using simple machine-learning approaches. We build an
emulator based on dimensionality reduction and machine learning regression
combining simple Principal Component Analysis and supervised learning methods.
For the estimations with a single free parameter, we train on the dark matter
density parameter, $\Omega_m$, while for emulations with two free parameters,
we train on a range of $\Omega_m$ and redshift. The method first adopts a
projection of a grid of simulations on a given basis; then, a machine learning
regression is trained on this projected grid. Finally, new density cubes for
different cosmological parameters can be estimated without relying directly on
new N-body simulations by predicting and de-projecting the basis coefficients.
We show that the proposed emulator can generate density cubes at non-linear
cosmological scales with density distributions within a few percent compared to
the corresponding N-body simulations. The method enables gains of three orders
of magnitude in CPU run times compared to performing a full N-body simulation
while reproducing the power spectrum and bispectrum within $\sim 1\%$ and $\sim
3\%$, respectively, for the single free parameter emulation and $\sim 5\%$ and
$\sim 15\%$ for two free parameters. This can significantly accelerate the
generation of density cubes for a wide variety of cosmological models, opening
the doors to previously unfeasible applications, such as parameter and model
inferences at full survey scales as the ESA/NASA Euclid mission.
Related papers
- Mean-Field Simulation-Based Inference for Cosmological Initial Conditions [4.520518890664213]
We present a simple method for Bayesian field reconstruction based on modeling the posterior distribution of the initial matter density field to be diagonal Gaussian in Fourier space.
Training and sampling are extremely fast (training: $sim 1, mathrmh$ on a GPU, sampling: $lesssim 3, mathrms$ for 1000 samples at resolution $1283$), and our method supports industry-standard (non-differentiable) $N$-body simulators.
arXiv Detail & Related papers (2024-10-21T09:23:50Z) - CHARM: Creating Halos with Auto-Regressive Multi-stage networks [1.6987257996124416]
CHARM is a novel method for creating mock halo catalogs.
We show that the mock halo catalogs and painted galaxy catalogs have the same statistical properties as obtained from $N$-body simulations in both real space and redshift space.
arXiv Detail & Related papers (2024-09-13T18:00:06Z) - A Multi-Grained Symmetric Differential Equation Model for Learning
Protein-Ligand Binding Dynamics [74.93549765488103]
In drug discovery, molecular dynamics simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding.
We show the efficiency and effectiveness of NeuralMD, with a 2000$times$ speedup over standard numerical MD simulation and outperforming all other ML approaches by up to 80% under the stability metric.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
We propose the geometry-informed neural operator (GINO) to learn the solution operator of large-scale partial differential equations.
We successfully trained GINO to predict the pressure on car surfaces using only five hundred data points.
arXiv Detail & Related papers (2023-09-01T16:59:21Z) - ELSA -- Enhanced latent spaces for improved collider simulations [0.1450405446885067]
Simulations play a key role for inference in collider physics.
We explore various approaches for enhancing the precision of simulations using machine learning.
We find that modified simulations can achieve sub-percent precision across a wide range of phase space.
arXiv Detail & Related papers (2023-05-12T18:00:03Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
We introduce Learning controllable Adaptive simulation for Multi-resolution Physics (LAMP) as the first full deep learning-based surrogate model.
LAMP consists of a Graph Neural Network (GNN) for learning the forward evolution, and a GNN-based actor-critic for learning the policy of spatial refinement and coarsening.
We demonstrate that our LAMP outperforms state-of-the-art deep learning surrogate models, and can adaptively trade-off computation to improve long-term prediction error.
arXiv Detail & Related papers (2023-05-01T23:20:27Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Field Level Neural Network Emulator for Cosmological N-body Simulations [7.051595217991437]
We build a field level emulator for cosmic structure formation that is accurate in the nonlinear regime.
We use two convolutional neural networks trained to output the nonlinear displacements and velocities of N-body simulation particles.
arXiv Detail & Related papers (2022-06-09T16:21:57Z) - Fast and realistic large-scale structure from machine-learning-augmented
random field simulations [0.0]
We train a machine learning model to transform projected lognormal dark matter density fields to more realistic dark matter maps.
We demonstrate the performance of our model comparing various statistical tests with different field resolutions, redshifts and cosmological parameters.
arXiv Detail & Related papers (2022-05-16T18:00:01Z) - Satellite galaxy abundance dependency on cosmology in Magneticum
simulations [101.18253437732933]
We build an emulator of satellite abundance based on cosmological parameters.
We find that $A$ and $beta$ depend on cosmological parameters, even if weakly.
We also show that satellite abundance cosmology dependency differs between full-physics (FP) simulations, dark-matter only (DMO) and non-radiative simulations.
arXiv Detail & Related papers (2021-10-11T18:00:02Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.