Sensing the Pulse of the Pandemic: Geovisualizing the Demographic
Disparities of Public Sentiment toward COVID-19 through Social Media
- URL: http://arxiv.org/abs/2304.06120v2
- Date: Wed, 2 Aug 2023 21:02:51 GMT
- Title: Sensing the Pulse of the Pandemic: Geovisualizing the Demographic
Disparities of Public Sentiment toward COVID-19 through Social Media
- Authors: Binbin Lina, Lei Zoua, Bo Zhao, Xiao Huang, Heng Cai, Mingzheng Yang,
and Bing Zhou
- Abstract summary: Social media use varies across demographics, with younger users being more prevalent compared to older populations.
This study explores solutions and the demographic biases in social media analysis through a case study estimating public sentiment about COVID-19 using Twitter data.
- Score: 9.906180010952406
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Social media offers a unique lens to observe large-scale, spatial-temporal
patterns of users reactions toward critical events. However, social media use
varies across demographics, with younger users being more prevalent compared to
older populations. This difference introduces biases in data
representativeness, and analysis based on social media without proper
adjustment will lead to overlooking the voices of digitally marginalized
communities and inaccurate estimations. This study explores solutions to
pinpoint and alleviate the demographic biases in social media analysis through
a case study estimating the public sentiment about COVID-19 using Twitter data.
We analyzed the pandemic-related Twitter data in the U.S. during 2020-2021 to
(1) elucidate the uneven social media usage among demographic groups and the
disparities of their sentiments toward COVID-19, (2) construct an adjusted
public sentiment measurement based on social media, the Sentiment Adjusted by
Demographics (SAD) index, to evaluate the spatiotemporal varying public
sentiment toward COVID-19. The results show higher proportions of female and
adolescent Twitter users expressing negative emotions to COVID-19. The SAD
index unveils that the public sentiment toward COVID-19 was most negative in
January and February 2020 and most positive in April 2020. Vermont and Wyoming
were the most positive and negative states toward COVID-19.
Related papers
- Exploring celebrity influence on public attitude towards the COVID-19
pandemic: social media shared sentiment analysis [0.7340017786387767]
People have turned to social media networks to share sentiments related to the COVID-19 pandemic.
We examined the role of social messaging shared by Persons in the Public Eye in determining overall public discourse direction.
Our findings suggest the presence of consistent patterns of emotional content co-occurring with messaging shared by Persons in the Public Eye.
arXiv Detail & Related papers (2023-02-23T21:56:50Z) - Fine-tuned Sentiment Analysis of COVID-19 Vaccine-Related Social Media
Data: Comparative Study [0.7874708385247353]
This study investigated and compared public sentiment related to COVID-19 vaccines expressed on two popular social media platforms, Reddit and Twitter.
We created a fine-tuned DistilRoBERTa model to predict sentiments of approximately 9.5 million Tweets and 70 thousand Reddit comments.
Our results determined that the average sentiment expressed on Twitter was more negative (52% positive) than positive.
arXiv Detail & Related papers (2022-10-17T16:22:18Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
We estimate the extent to which misinformation has influenced the course of the COVID-19 pandemic using natural language processing models.
We provide a strategy to combat social media posts that are likely to cause widespread harm.
arXiv Detail & Related papers (2022-06-12T19:41:01Z) - American Twitter Users Revealed Social Determinants-related Oral Health
Disparities amid the COVID-19 Pandemic [72.44305630014534]
We collected oral health-related tweets during the COVID-19 pandemic from 9,104 Twitter users across 26 states.
Women and younger adults (19-29) are more likely to talk about oral health problems.
People from counties at a higher risk of COVID-19 talk more about tooth decay/gum bleeding and chipped tooth/tooth break.
arXiv Detail & Related papers (2021-09-16T01:10:06Z) - How COVID-19 has Impacted American Attitudes Toward China: A Study on
Twitter [3.6348608903976065]
We use social media data to examine whether a major global event has causally changed American views of another country.
We find that awareness of COVID-19 causes a sharp rise in anti-China attitudes.
arXiv Detail & Related papers (2021-08-25T04:29:58Z) - Sentiment Analysis of Covid-19 Tweets using Evolutionary
Classification-Based LSTM Model [0.6445605125467573]
This paper represents the sentiment analysis on collected large number of tweets on Coronavirus or Covid-19.
We analyze the trend of public sentiment on the topics related to Covid-19 epidemic using an evolutionary classification followed by the n-gram analysis.
We trained the long-short term network using two types of rated tweets to predict sentiment on Covid-19 data and obtained an overall accuracy of 84.46%.
arXiv Detail & Related papers (2021-06-13T04:27:21Z) - Understanding the Hoarding Behaviors during the COVID-19 Pandemic using
Large Scale Social Media Data [77.34726150561087]
We analyze the hoarding and anti-hoarding patterns of over 42,000 unique Twitter users in the United States from March 1 to April 30, 2020.
We find the percentage of females in both hoarding and anti-hoarding groups is higher than that of the general Twitter user population.
The LIWC anxiety mean for the hoarding-related tweets is significantly higher than the baseline Twitter anxiety mean.
arXiv Detail & Related papers (2020-10-15T16:02:25Z) - Country Image in COVID-19 Pandemic: A Case Study of China [79.17323278601869]
Country image has a profound influence on international relations and economic development.
In the worldwide outbreak of COVID-19, countries and their people display different reactions.
In this study, we take China as a specific and typical case and investigate its image with aspect-based sentiment analysis on a large-scale Twitter dataset.
arXiv Detail & Related papers (2020-09-12T15:54:51Z) - Detecting Topic and Sentiment Dynamics Due to COVID-19 Pandemic Using
Social Media [14.662523926129117]
We analyze the topic and sentiment dynamics due to COVID-19 from the massive social media posts.
Some topics like stay safe home" are dominated with positive sentiment.
The others such as people death" are consistently showing negative sentiment.
arXiv Detail & Related papers (2020-07-05T12:05:30Z) - Analyzing COVID-19 on Online Social Media: Trends, Sentiments and
Emotions [44.92240076313168]
We analyze the affective trajectories of the American people and the Chinese people based on Twitter and Weibo posts between January 20th, 2020 and May 11th 2020.
By contrasting two very different countries, China and the Unites States, we reveal sharp differences in people's views on COVID-19 in different cultures.
Our study provides a computational approach to unveiling public emotions and concerns on the pandemic in real-time, which would potentially help policy-makers better understand people's need and thus make optimal policy.
arXiv Detail & Related papers (2020-05-29T09:24:38Z) - The Ivory Tower Lost: How College Students Respond Differently than the
General Public to the COVID-19 Pandemic [66.80677233314002]
Pandemic of the novel Coronavirus Disease 2019 (COVID-19) has presented governments with ultimate challenges.
In the United States, the country with the highest confirmed COVID-19 infection cases, a nationwide social distancing protocol has been implemented by the President.
This paper aims to discover the social implications of this unprecedented disruption in our interactive society by mining people's opinions on social media.
arXiv Detail & Related papers (2020-04-21T13:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.