Exploring celebrity influence on public attitude towards the COVID-19
pandemic: social media shared sentiment analysis
- URL: http://arxiv.org/abs/2303.16759v1
- Date: Thu, 23 Feb 2023 21:56:50 GMT
- Title: Exploring celebrity influence on public attitude towards the COVID-19
pandemic: social media shared sentiment analysis
- Authors: Brianna M White, Chad A Melton, Parya Zareie, Robert L Davis, Robert A
Bednarczyk, Arash Shaban-Nejad
- Abstract summary: People have turned to social media networks to share sentiments related to the COVID-19 pandemic.
We examined the role of social messaging shared by Persons in the Public Eye in determining overall public discourse direction.
Our findings suggest the presence of consistent patterns of emotional content co-occurring with messaging shared by Persons in the Public Eye.
- Score: 0.7340017786387767
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The COVID-19 pandemic has introduced new opportunities for health
communication, including an increase in the public use of online outlets for
health-related emotions. People have turned to social media networks to share
sentiments related to the impacts of the COVID-19 pandemic. In this paper we
examine the role of social messaging shared by Persons in the Public Eye (i.e.
athletes, politicians, news personnel) in determining overall public discourse
direction. We harvested approximately 13 million tweets ranging from 1 January
2020 to 1 March 2022. The sentiment was calculated for each tweet using a
fine-tuned DistilRoBERTa model, which was used to compare COVID-19
vaccine-related Twitter posts (tweets) that co-occurred with mentions of People
in the Public Eye. Our findings suggest the presence of consistent patterns of
emotional content co-occurring with messaging shared by Persons in the Public
Eye for the first two years of the COVID-19 pandemic influenced public opinion
and largely stimulated online public discourse. We demonstrate that as the
pandemic progressed, public sentiment shared on social networks was shaped by
risk perceptions, political ideologies and health-protective behaviours shared
by Persons in the Public Eye, often in a negative light.
Related papers
- Visualizing Relation Between (De)Motivating Topics and Public Stance
toward COVID-19 Vaccine [0.0]
In this study, we proposed an interactive visualization tool to inspect and analyze the topics that resonated among Twitter-sphere during the COVID-19 pandemic.
This tool can easily be generalized for any scenario for visual analysis and to increase the transparency of social media data for researchers and the general population alike.
arXiv Detail & Related papers (2023-06-21T09:01:53Z) - Sensing the Pulse of the Pandemic: Geovisualizing the Demographic
Disparities of Public Sentiment toward COVID-19 through Social Media [9.906180010952406]
Social media use varies across demographics, with younger users being more prevalent compared to older populations.
This study explores solutions and the demographic biases in social media analysis through a case study estimating public sentiment about COVID-19 using Twitter data.
arXiv Detail & Related papers (2023-03-17T02:59:46Z) - Fine-tuned Sentiment Analysis of COVID-19 Vaccine-Related Social Media
Data: Comparative Study [0.7874708385247353]
This study investigated and compared public sentiment related to COVID-19 vaccines expressed on two popular social media platforms, Reddit and Twitter.
We created a fine-tuned DistilRoBERTa model to predict sentiments of approximately 9.5 million Tweets and 70 thousand Reddit comments.
Our results determined that the average sentiment expressed on Twitter was more negative (52% positive) than positive.
arXiv Detail & Related papers (2022-10-17T16:22:18Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
We estimate the extent to which misinformation has influenced the course of the COVID-19 pandemic using natural language processing models.
We provide a strategy to combat social media posts that are likely to cause widespread harm.
arXiv Detail & Related papers (2022-06-12T19:41:01Z) - Parasocial diffusion: K-pop fandoms help drive COVID-19 public health
messaging on social media [11.772370636609677]
We analyze the online spread of the hashtag #WearAMask and vaccine-related tweets amid anti-mask sentiments and public health misinformation.
Analyses reveal the South Korean boyband BTS as one of the most significant driver of health discourse.
Mechanistically, strong-levels of parasocial engagement and connectedness allow sustained activism in the community.
arXiv Detail & Related papers (2021-10-07T17:55:27Z) - American Twitter Users Revealed Social Determinants-related Oral Health
Disparities amid the COVID-19 Pandemic [72.44305630014534]
We collected oral health-related tweets during the COVID-19 pandemic from 9,104 Twitter users across 26 states.
Women and younger adults (19-29) are more likely to talk about oral health problems.
People from counties at a higher risk of COVID-19 talk more about tooth decay/gum bleeding and chipped tooth/tooth break.
arXiv Detail & Related papers (2021-09-16T01:10:06Z) - Understanding the Hoarding Behaviors during the COVID-19 Pandemic using
Large Scale Social Media Data [77.34726150561087]
We analyze the hoarding and anti-hoarding patterns of over 42,000 unique Twitter users in the United States from March 1 to April 30, 2020.
We find the percentage of females in both hoarding and anti-hoarding groups is higher than that of the general Twitter user population.
The LIWC anxiety mean for the hoarding-related tweets is significantly higher than the baseline Twitter anxiety mean.
arXiv Detail & Related papers (2020-10-15T16:02:25Z) - Dark Web Marketplaces and COVID-19: before the vaccine [53.447910186085586]
We analyse 851,199 listings extracted from 30 dark web marketplaces between January 1, 2020 and November 16, 2020.
We identify 788 listings directly related to COVID-19 products and monitor the temporal evolution of product categories.
We reveal how the online shadow economy has evolved during the COVID-19 pandemic and highlight the importance of a continuous monitoring of DWMs.
arXiv Detail & Related papers (2020-08-04T14:27:41Z) - Detecting Topic and Sentiment Dynamics Due to COVID-19 Pandemic Using
Social Media [14.662523926129117]
We analyze the topic and sentiment dynamics due to COVID-19 from the massive social media posts.
Some topics like stay safe home" are dominated with positive sentiment.
The others such as people death" are consistently showing negative sentiment.
arXiv Detail & Related papers (2020-07-05T12:05:30Z) - Analyzing COVID-19 on Online Social Media: Trends, Sentiments and
Emotions [44.92240076313168]
We analyze the affective trajectories of the American people and the Chinese people based on Twitter and Weibo posts between January 20th, 2020 and May 11th 2020.
By contrasting two very different countries, China and the Unites States, we reveal sharp differences in people's views on COVID-19 in different cultures.
Our study provides a computational approach to unveiling public emotions and concerns on the pandemic in real-time, which would potentially help policy-makers better understand people's need and thus make optimal policy.
arXiv Detail & Related papers (2020-05-29T09:24:38Z) - The Ivory Tower Lost: How College Students Respond Differently than the
General Public to the COVID-19 Pandemic [66.80677233314002]
Pandemic of the novel Coronavirus Disease 2019 (COVID-19) has presented governments with ultimate challenges.
In the United States, the country with the highest confirmed COVID-19 infection cases, a nationwide social distancing protocol has been implemented by the President.
This paper aims to discover the social implications of this unprecedented disruption in our interactive society by mining people's opinions on social media.
arXiv Detail & Related papers (2020-04-21T13:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.