In-Distribution and Out-of-Distribution Self-supervised ECG Representation Learning for Arrhythmia Detection
- URL: http://arxiv.org/abs/2304.06427v2
- Date: Wed, 27 Mar 2024 02:58:26 GMT
- Title: In-Distribution and Out-of-Distribution Self-supervised ECG Representation Learning for Arrhythmia Detection
- Authors: Sahar Soltanieh, Javad Hashemi, Ali Etemad,
- Abstract summary: This paper presents a systematic investigation into the effectiveness of Self-Supervised Learning (SSL) methods for ECG arrhythmia detection.
We begin by conducting a novel analysis of the data distributions on three popular ECG-based arrhythmia datasets: PTB-XL, Chapman, and Ribeiro.
We then perform a comprehensive set of experiments using different augmentations and parameters to evaluate the effectiveness of various SSL methods.
Our analysis shows that SSL methods achieve highly competitive results to those achieved by supervised state-of-the-art methods.
- Score: 21.222167116069144
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper presents a systematic investigation into the effectiveness of Self-Supervised Learning (SSL) methods for Electrocardiogram (ECG) arrhythmia detection. We begin by conducting a novel analysis of the data distributions on three popular ECG-based arrhythmia datasets: PTB-XL, Chapman, and Ribeiro. To the best of our knowledge, our study is the first to quantitatively explore and characterize these distributions in the area. We then perform a comprehensive set of experiments using different augmentations and parameters to evaluate the effectiveness of various SSL methods, namely SimCRL, BYOL, and SwAV, for ECG representation learning, where we observe the best performance achieved by SwAV. Furthermore, our analysis shows that SSL methods achieve highly competitive results to those achieved by supervised state-of-the-art methods. To further assess the performance of these methods on both In-Distribution (ID) and Out-of-Distribution (OOD) ECG data, we conduct cross-dataset training and testing experiments. Our comprehensive experiments show almost identical results when comparing ID and OOD schemes, indicating that SSL techniques can learn highly effective representations that generalize well across different OOD datasets. This finding can have major implications for ECG-based arrhythmia detection. Lastly, to further analyze our results, we perform detailed per-disease studies on the performance of the SSL methods on the three datasets.
Related papers
- FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment.
Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality.
This paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD.
arXiv Detail & Related papers (2024-10-28T02:24:01Z) - Deep Learning for identifying systolic complexes in SCG traces: a cross-dataset analysis [3.2109665109975696]
State-of-art solutions to detect the systolic complex are based on Deep Learning models.
In this work, a cross-dataset experimental analysis was performed considering also data from a real-world scenario.
arXiv Detail & Related papers (2024-08-08T13:10:03Z) - Foundation Models for ECG: Leveraging Hybrid Self-Supervised Learning for Advanced Cardiac Diagnostics [2.948318253609515]
Using foundation models enhanced by self-supervised learning (SSL) methods presents an innovative approach to electrocardiogram (ECG) analysis.
This study comprehensively evaluates foundation models for ECGs, leveraging SSL methods, including generative and contrastive learning.
We developed a Hybrid Learning (HL) for foundation models that improve the precision and reliability of cardiac diagnostics.
arXiv Detail & Related papers (2024-06-26T02:24:13Z) - Zero-Shot ECG Classification with Multimodal Learning and Test-time Clinical Knowledge Enhancement [10.611952462532908]
Multimodal ECG Representation Learning (MERL) is capable of performing zero-shot ECG classification with text prompts.
We propose the Clinical Knowledge Enhanced Prompt Engineering (CKEPE) approach to exploit external expert-verified clinical knowledge databases.
MERL achieves an average AUC score of 75.2% in zero-shot classification (without training data), 3.2% higher than linear probed eSSL methods with 10% annotated training data, averaged across all six datasets.
arXiv Detail & Related papers (2024-03-11T12:28:55Z) - Guiding Masked Representation Learning to Capture Spatio-Temporal Relationship of Electrocardiogram [2.2842904085777045]
We introduce ST-MEM (S-Temporal Masked Electrocardiogram Modeling), designed to learntemporal features by reconstructing 12-lead ECG data.
ST-MEM outperforms other SSL baseline methods in various experimental settings for arrhythmia.
arXiv Detail & Related papers (2024-02-02T10:04:13Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Extraction of volumetric indices from echocardiography: which deep
learning solution for clinical use? [6.144041824426555]
We show that the proposed 3D nnU-Net outperforms alternative 2D and recurrent segmentation methods.
Overall, the experimental results suggest that with sufficient training data, 3D nnU-Net could become the first automated tool to meet the standards of an everyday clinical device.
arXiv Detail & Related papers (2023-05-03T09:38:52Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.