Deep Learning for identifying systolic complexes in SCG traces: a cross-dataset analysis
- URL: http://arxiv.org/abs/2408.04439v1
- Date: Thu, 8 Aug 2024 13:10:03 GMT
- Title: Deep Learning for identifying systolic complexes in SCG traces: a cross-dataset analysis
- Authors: Michele Craighero, Sarah Solbiati, Federica Mozzini, Enrico Caiani, Giacomo Boracchi,
- Abstract summary: State-of-art solutions to detect the systolic complex are based on Deep Learning models.
In this work, a cross-dataset experimental analysis was performed considering also data from a real-world scenario.
- Score: 3.2109665109975696
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The seismocardiographic signal is a promising alternative to the traditional ECG in the analysis of the cardiac activity. In particular, the systolic complex is known to be the most informative part of the seismocardiogram, thus requiring further analysis. State-of-art solutions to detect the systolic complex are based on Deep Learning models, which have been proven effective in pioneering studies. However, these solutions have only been tested in a controlled scenario considering only clean signals acquired from users maintained still in supine position. On top of that, all these studies consider data coming from a single dataset, ignoring the benefits and challenges related to a cross-dataset scenario. In this work, a cross-dataset experimental analysis was performed considering also data from a real-world scenario. Our findings prove the effectiveness of a deep learning solution, while showing the importance of a personalization step to contrast the domain shift, namely a change in data distribution between training and testing data. Finally, we demonstrate the benefits of a multi-channels approach, leveraging the information extracted from both accelerometers and gyroscopes data.
Related papers
- A Multi-Dataset Classification-Based Deep Learning Framework for Electronic Health Records and Predictive Analysis in Healthcare [0.5999777817331317]
This study proposes a novel deep learning predictive analysis framework for classifying multiple datasets.
A hybrid deep learning model combining Residual Networks and Artificial Neural Networks is proposed to detect acute and chronic diseases.
Rigorous experimentation and evaluation resulted in high accuracies of 93%, 99%, and 95% for retinal fundus images, cirrhosis stages, and heart disease diagnostic predictions, respectively.
arXiv Detail & Related papers (2024-09-25T08:13:39Z) - Self-Trained Model for ECG Complex Delineation [0.0]
Electrocardiogram (ECG) delineation plays a crucial role in assisting cardiologists with accurate diagnoses.
We introduce a dataset for ECG delineation and propose a novel self-trained method aimed at leveraging a vast amount of unlabeled ECG data.
Our approach involves the pseudolabeling of unlabeled data using a neural network trained on our dataset. Subsequently, we train the model on the newly labeled samples to enhance the quality of delineation.
arXiv Detail & Related papers (2024-06-04T18:54:10Z) - Continuous max-flow augmentation of self-supervised few-shot learning on SPECT left ventricles [0.0]
This paper aims to give a recipe for diagnostic centers as well as for clinics to automatically segment the myocardium based on small and low-quality labels on reconstructed SPECT.
A combination of Continuous Max-Flow (CMF) with prior shape information is developed to augment the 3D U-Net self-supervised learning (SSL) approach on various geometries of SPECT apparatus.
arXiv Detail & Related papers (2024-05-09T03:19:19Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
We propose an unsupervised approach leveraging EEG signal physics.
We map EEG channels to fixed positions using field, source-free domain adaptation.
Our method demonstrates robust performance in brain-computer interface (BCI) tasks and potential biomarker applications.
arXiv Detail & Related papers (2024-03-07T16:17:33Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Extraction of volumetric indices from echocardiography: which deep
learning solution for clinical use? [6.144041824426555]
We show that the proposed 3D nnU-Net outperforms alternative 2D and recurrent segmentation methods.
Overall, the experimental results suggest that with sufficient training data, 3D nnU-Net could become the first automated tool to meet the standards of an everyday clinical device.
arXiv Detail & Related papers (2023-05-03T09:38:52Z) - Leveraging Unlabelled Data in Multiple-Instance Learning Problems for
Improved Detection of Parkinsonian Tremor in Free-Living Conditions [80.88681952022479]
We introduce a new method for combining semi-supervised with multiple-instance learning.
We show that by leveraging the unlabelled data of 454 subjects we can achieve large performance gains in per-subject tremor detection.
arXiv Detail & Related papers (2023-04-29T12:25:10Z) - In-Distribution and Out-of-Distribution Self-supervised ECG Representation Learning for Arrhythmia Detection [21.222167116069144]
This paper presents a systematic investigation into the effectiveness of Self-Supervised Learning (SSL) methods for ECG arrhythmia detection.
We begin by conducting a novel analysis of the data distributions on three popular ECG-based arrhythmia datasets: PTB-XL, Chapman, and Ribeiro.
We then perform a comprehensive set of experiments using different augmentations and parameters to evaluate the effectiveness of various SSL methods.
Our analysis shows that SSL methods achieve highly competitive results to those achieved by supervised state-of-the-art methods.
arXiv Detail & Related papers (2023-04-13T11:46:32Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
This paper develops Deep Representational Similarity Learning (DRSL), a deep extension of Representational Similarity Analysis (RSA)
DRSL is appropriate for analyzing similarities between various cognitive tasks in fMRI datasets with a large number of subjects.
arXiv Detail & Related papers (2020-09-28T18:30:14Z) - Trajectories, bifurcations and pseudotime in large clinical datasets:
applications to myocardial infarction and diabetes data [94.37521840642141]
We suggest a semi-supervised methodology for the analysis of large clinical datasets, characterized by mixed data types and missing values.
The methodology is based on application of elastic principal graphs which can address simultaneously the tasks of dimensionality reduction, data visualization, clustering, feature selection and quantifying the geodesic distances (pseudotime) in partially ordered sequences of observations.
arXiv Detail & Related papers (2020-07-07T21:04:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.