Foundation Models for ECG: Leveraging Hybrid Self-Supervised Learning for Advanced Cardiac Diagnostics
- URL: http://arxiv.org/abs/2407.07110v2
- Date: Tue, 15 Oct 2024 09:33:39 GMT
- Title: Foundation Models for ECG: Leveraging Hybrid Self-Supervised Learning for Advanced Cardiac Diagnostics
- Authors: Junho Song, Jong-Hwan Jang, Byeong Tak Lee, DongGyun Hong, Joon-myoung Kwon, Yong-Yeon Jo,
- Abstract summary: Using foundation models enhanced by self-supervised learning (SSL) methods presents an innovative approach to electrocardiogram (ECG) analysis.
This study comprehensively evaluates foundation models for ECGs, leveraging SSL methods, including generative and contrastive learning.
We developed a Hybrid Learning (HL) for foundation models that improve the precision and reliability of cardiac diagnostics.
- Score: 2.948318253609515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Using foundation models enhanced by self-supervised learning (SSL) methods presents an innovative approach to electrocardiogram (ECG) analysis, which is crucial for cardiac health monitoring and diagnosis. This study comprehensively evaluates foundation models for ECGs, leveraging SSL methods, including generative and contrastive learning, on a vast dataset comprising approximately 1.3 million ECG samples. By integrating these methods with consideration of the unique characteristics of ECGs, we developed a Hybrid Learning (HL) for foundation models that improve the precision and reliability of cardiac diagnostics. The HL-based foundation model adeptly captures the intricate details of ECGs, enhancing diagnostic capability. The results underscore the considerable potential of SSL-enhanced foundation models in clinical settings, setting the stage for future research into their scalable applications across a broader range of medical diagnostics. This work sets a new standard in the ECG field, emphasizing the transformative influence of tailored, data-driven model training on the effectiveness and accuracy of medical diagnostics.
Related papers
- ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
We propose a disease-specific attention-based deep learning model (DANet) for arrhythmia detection from short ECG recordings.
The novel idea is to introduce a soft-coding or hard-coding waveform enhanced module into existing deep neural networks.
For the soft-coding DANet, we also develop a learning framework combining self-supervised pre-training with two-stage supervised training.
arXiv Detail & Related papers (2024-07-25T13:27:10Z) - TACCO: Task-guided Co-clustering of Clinical Concepts and Patient Visits for Disease Subtyping based on EHR Data [42.96821770394798]
TACCO is a novel framework that jointly discovers clusters of clinical concepts and patient visits based on a hypergraph modeling of EHR data.
We conduct experiments on the public MIMIC-III dataset and Emory internal CRADLE dataset over the downstream clinical tasks of phenotype classification and cardiovascular risk prediction.
In-depth model analysis, clustering results analysis, and clinical case studies further validate the improved utilities and insightful interpretations delivered by TACCO.
arXiv Detail & Related papers (2024-06-14T14:18:38Z) - Self-Trained Model for ECG Complex Delineation [0.0]
Electrocardiogram (ECG) delineation plays a crucial role in assisting cardiologists with accurate diagnoses.
We introduce a dataset for ECG delineation and propose a novel self-trained method aimed at leveraging a vast amount of unlabeled ECG data.
Our approach involves the pseudolabeling of unlabeled data using a neural network trained on our dataset. Subsequently, we train the model on the newly labeled samples to enhance the quality of delineation.
arXiv Detail & Related papers (2024-06-04T18:54:10Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - In-Distribution and Out-of-Distribution Self-supervised ECG Representation Learning for Arrhythmia Detection [21.222167116069144]
This paper presents a systematic investigation into the effectiveness of Self-Supervised Learning (SSL) methods for ECG arrhythmia detection.
We begin by conducting a novel analysis of the data distributions on three popular ECG-based arrhythmia datasets: PTB-XL, Chapman, and Ribeiro.
We then perform a comprehensive set of experiments using different augmentations and parameters to evaluate the effectiveness of various SSL methods.
Our analysis shows that SSL methods achieve highly competitive results to those achieved by supervised state-of-the-art methods.
arXiv Detail & Related papers (2023-04-13T11:46:32Z) - ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on
Continual Learning [20.465733855762835]
Electrocardiogram (ECG) monitoring is one of the most powerful technique of cardiovascular disease (CVD) early identification.
Classic rule-based algorithms are now completely outperformed by deep learning based methods.
We propose a multi-resolution model that can sustain high-resolution low-level semantic information throughout.
arXiv Detail & Related papers (2023-04-10T15:19:00Z) - A Multi-View Learning Approach to Enhance Automatic 12-Lead ECG
Diagnosis Performance [0.240137930000971]
This study proposes an ensemble-based multi-view learning approach with an ECG augmentation technique to achieve a higher performance than traditional automatic 12-lead ECG diagnosis methods.
The proposed model reports an F1 score of 0.840, which outperforms existing state-ofthe-art methods in the literature.
arXiv Detail & Related papers (2022-07-30T23:43:01Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
The electrocardiogram (ECG) is one of the most commonly used diagnostic tools in medicine and healthcare.
Deep learning methods have achieved promising results on predictive healthcare tasks using ECG signals.
This paper presents a systematic review of deep learning methods for ECG data from both modeling and application perspectives.
arXiv Detail & Related papers (2019-12-28T02:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.