Learning Personalized Decision Support Policies
- URL: http://arxiv.org/abs/2304.06701v2
- Date: Mon, 27 May 2024 14:10:24 GMT
- Title: Learning Personalized Decision Support Policies
- Authors: Umang Bhatt, Valerie Chen, Katherine M. Collins, Parameswaran Kamalaruban, Emma Kallina, Adrian Weller, Ameet Talwalkar,
- Abstract summary: $texttModiste$ is an interactive tool to learn personalized decision support policies.
We find that personalized policies outperform offline policies, and, in the cost-aware setting, reduce the incurred cost with minimal degradation to performance.
- Score: 56.949897454209186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Individual human decision-makers may benefit from different forms of support to improve decision outcomes, but when each form of support will yield better outcomes? In this work, we posit that personalizing access to decision support tools can be an effective mechanism for instantiating the appropriate use of AI assistance. Specifically, we propose the general problem of learning a decision support policy that, for a given input, chooses which form of support to provide to decision-makers for whom we initially have no prior information. We develop $\texttt{Modiste}$, an interactive tool to learn personalized decision support policies. $\texttt{Modiste}$ leverages stochastic contextual bandit techniques to personalize a decision support policy for each decision-maker and supports extensions to the multi-objective setting to account for auxiliary objectives like the cost of support. We find that personalized policies outperform offline policies, and, in the cost-aware setting, reduce the incurred cost with minimal degradation to performance. Our experiments include various realistic forms of support (e.g., expert consensus and predictions from a large language model) on vision and language tasks. Our human subject experiments validate our computational experiments, demonstrating that personalization can yield benefits in practice for real users, who interact with $\texttt{Modiste}$.
Related papers
- Dynamic Information Sub-Selection for Decision Support [5.063114309794011]
We introduce Dynamic Information Sub-Selection (DISS), a novel framework of AI assistance designed to enhance the performance of black-box decision-makers.
We explore several applications of DISS, including biased decision-maker support, expert assignment optimization, large language model decision support, and interpretability.
arXiv Detail & Related papers (2024-10-30T20:00:54Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Decoding AI's Nudge: A Unified Framework to Predict Human Behavior in
AI-assisted Decision Making [24.258056813524167]
We propose a computational framework that can provide an interpretable characterization of the influence of different forms of AI assistance on decision makers.
By conceptualizing AI assistance as the em nudge'' in human decision making processes, our approach centers around modelling how different forms of AI assistance modify humans' strategy in weighing different information in making their decisions.
arXiv Detail & Related papers (2024-01-11T11:22:36Z) - Optimising Human-AI Collaboration by Learning Convincing Explanations [62.81395661556852]
We propose a method for a collaborative system that remains safe by having a human making decisions.
Ardent enables efficient and effective decision-making by adapting to individual preferences for explanations.
arXiv Detail & Related papers (2023-11-13T16:00:16Z) - Proactive Detractor Detection Framework Based on Message-Wise Sentiment
Analysis Over Customer Support Interactions [60.87845704495664]
We propose a framework relying solely on chat-based customer support interactions for predicting the recommendation decision of individual users.
For our case study, we analyzed a total number of 16.4k users and 48.7k customer support conversations within the financial vertical of a large e-commerce company in Latin America.
Our results show that, with respective feature interpretability, it is possible to predict the likelihood of a user to recommend a product or service, based solely on the message-wise sentiment evolution of their CS conversations in a fully automated way.
arXiv Detail & Related papers (2022-11-08T00:43:36Z) - Human-Centric Decision Support Tools: Insights from Real-World Design
and Implementation [0.0]
Decision support tools enable improved decision-making for challenging decision problems.
Their intentional design is a critical component of the value they create.
We advocate for an innovative, and perhaps overlooked, approach to designing effective decision support tools.
arXiv Detail & Related papers (2021-11-10T16:45:46Z) - Towards Emotional Support Dialog Systems [61.58828606097423]
We define the Emotional Support Conversation task and propose an ESC Framework, which is grounded on the Helping Skills Theory.
We construct an Emotion Support Conversation dataset (ESConv) with rich annotation (especially support strategy) in a help-seeker and supporter mode.
We evaluate state-of-the-art dialog models with respect to the ability to provide emotional support.
arXiv Detail & Related papers (2021-06-02T13:30:43Z) - RADAR-X: An Interactive Mixed Initiative Planning Interface Pairing
Contrastive Explanations and Revised Plan Suggestions [30.98066157540983]
We present our decision support system RADAR-X that showcases the ability to engage the user in an interactive explanatory dialogue.
The system uses this dialogue to elicit the user's latent preferences and provides revised plan suggestions through three different interaction strategies.
arXiv Detail & Related papers (2020-11-19T04:18:38Z) - AvE: Assistance via Empowerment [77.08882807208461]
We propose a new paradigm for assistance by instead increasing the human's ability to control their environment.
This task-agnostic objective preserves the person's autonomy and ability to achieve any eventual state.
arXiv Detail & Related papers (2020-06-26T04:40:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.