Multi-fidelity prediction of fluid flow and temperature field based on
transfer learning using Fourier Neural Operator
- URL: http://arxiv.org/abs/2304.06972v1
- Date: Fri, 14 Apr 2023 07:46:03 GMT
- Title: Multi-fidelity prediction of fluid flow and temperature field based on
transfer learning using Fourier Neural Operator
- Authors: Yanfang Lyu, Xiaoyu Zhao, Zhiqiang Gong, Xiao Kang and Wen Yao
- Abstract summary: This work proposes a novel multi-fidelity learning method based on the Fourier Neural Operator.
It uses abundant low-fidelity data and limited high-fidelity data under transfer learning paradigm.
Three typical fluid and temperature prediction problems are chosen to validate the accuracy of the proposed multi-fidelity model.
- Score: 10.104417481736833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven prediction of fluid flow and temperature distribution in marine
and aerospace engineering has received extensive research and demonstrated its
potential in real-time prediction recently. However, usually large amounts of
high-fidelity data are required to describe and accurately predict the complex
physical information, while in reality, only limited high-fidelity data is
available due to the high experiment/computational cost. Therefore, this work
proposes a novel multi-fidelity learning method based on the Fourier Neural
Operator by jointing abundant low-fidelity data and limited high-fidelity data
under transfer learning paradigm. First, as a resolution-invariant operator,
the Fourier Neural Operator is first and gainfully applied to integrate
multi-fidelity data directly, which can utilize the scarce high-fidelity data
and abundant low-fidelity data simultaneously. Then, the transfer learning
framework is developed for the current task by extracting the rich low-fidelity
data knowledge to assist high-fidelity modeling training, to further improve
data-driven prediction accuracy. Finally, three typical fluid and temperature
prediction problems are chosen to validate the accuracy of the proposed
multi-fidelity model. The results demonstrate that our proposed method has high
effectiveness when compared with other high-fidelity models, and has the high
modeling accuracy of 99% for all the selected physical field problems.
Significantly, the proposed multi-fidelity learning method has the potential of
a simple structure with high precision, which can provide a reference for the
construction of the subsequent model.
Related papers
- Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
Time series forecasting plays a critical role in various real-world applications, including energy consumption prediction, disease transmission monitoring, and weather forecasting.
Most existing methods rely on a centralized training paradigm, where large amounts of data are collected from distributed devices to a central cloud server.
We propose a novel framework, Fed-TREND, to address data heterogeneity by generating informative synthetic data as auxiliary knowledge carriers.
arXiv Detail & Related papers (2024-11-24T04:56:45Z) - PiRD: Physics-informed Residual Diffusion for Flow Field Reconstruction [5.06136344261226]
CNN-based methods for data fidelity enhancement rely on low-fidelity data patterns and distributions during the training phase.
Our proposed model - Physics-informed Residual Diffusion - demonstrates the capability to elevate the quality of data from both standard low-fidelity inputs.
Experimental results have shown that our approach can effectively reconstruct high-quality outcomes for two-dimensional turbulent flows without requiring retraining.
arXiv Detail & Related papers (2024-04-12T11:45:51Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Multi-fidelity Fourier Neural Operator for Fast Modeling of Large-Scale
Geological Carbon Storage [0.0]
We propose to use a multi-fidelity Fourier neural operator (FNO) to solve large-scale carbon storage problems.
We first test the model efficacy on a GCS reservoir model being discretized into 110k grid cells.
The multi-fidelity model can predict with accuracy comparable to a high-fidelity model trained with the same amount of high-fidelity data with 81% less data generation costs.
arXiv Detail & Related papers (2023-08-17T17:44:59Z) - Diverse Data Augmentation with Diffusions for Effective Test-time Prompt
Tuning [73.75282761503581]
We propose DiffTPT, which leverages pre-trained diffusion models to generate diverse and informative new data.
Our experiments on test datasets with distribution shifts and unseen categories demonstrate that DiffTPT improves the zero-shot accuracy by an average of 5.13%.
arXiv Detail & Related papers (2023-08-11T09:36:31Z) - Disentangled Multi-Fidelity Deep Bayesian Active Learning [19.031567953748453]
Multi-fidelity active learning aims to learn a direct mapping from input parameters to simulation outputs at the highest fidelity.
Deep learning-based methods often impose a hierarchical structure in hidden representations, which only supports passing information from low-fidelity to high-fidelity.
We propose a novel framework called Disentangled Multi-fidelity Deep Bayesian Active Learning (D-MFDAL), which learns the surrogate models conditioned on the distribution of functions at multiple fidelities.
arXiv Detail & Related papers (2023-05-07T23:14:58Z) - Multi-fidelity surrogate modeling for temperature field prediction using
deep convolution neural network [8.98674326282801]
This paper proposes a pithy deep multi-fidelity model (DMFM) for temperature field prediction.
It takes advantage of low-fidelity data to boost the performance with less high-fidelity data.
A self-supervised learning method for training the physics-driven deep multi-fidelity model (PD-DMFM) is proposed.
arXiv Detail & Related papers (2023-01-17T03:13:45Z) - A Physics-informed Diffusion Model for High-fidelity Flow Field
Reconstruction [0.0]
We propose a diffusion model which only uses high-fidelity data at training.
With different configurations, our model is able to reconstruct high-fidelity data from either a regular low-fidelity sample or a sparsely measured sample.
Our model can produce accurate reconstruction results for 2d turbulent flows based on different input sources without retraining.
arXiv Detail & Related papers (2022-11-26T23:14:18Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.