Multi-fidelity Fourier Neural Operator for Fast Modeling of Large-Scale
Geological Carbon Storage
- URL: http://arxiv.org/abs/2308.09113v3
- Date: Tue, 9 Jan 2024 19:12:20 GMT
- Title: Multi-fidelity Fourier Neural Operator for Fast Modeling of Large-Scale
Geological Carbon Storage
- Authors: Hewei Tang, Qingkai Kong and Joseph P. Morris
- Abstract summary: We propose to use a multi-fidelity Fourier neural operator (FNO) to solve large-scale carbon storage problems.
We first test the model efficacy on a GCS reservoir model being discretized into 110k grid cells.
The multi-fidelity model can predict with accuracy comparable to a high-fidelity model trained with the same amount of high-fidelity data with 81% less data generation costs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based surrogate models have been widely applied in geological
carbon storage (GCS) problems to accelerate the prediction of reservoir
pressure and CO2 plume migration. Large amounts of data from physics-based
numerical simulators are required to train a model to accurately predict the
complex physical behaviors associated with this process. In practice, the
available training data are always limited in large-scale 3D problems due to
the high computational cost. Therefore, we propose to use a multi-fidelity
Fourier neural operator (FNO) to solve large-scale GCS problems with more
affordable multi-fidelity training datasets. FNO has a desirable grid-invariant
property, which simplifies the transfer learning procedure between datasets
with different discretization. We first test the model efficacy on a GCS
reservoir model being discretized into 110k grid cells. The multi-fidelity
model can predict with accuracy comparable to a high-fidelity model trained
with the same amount of high-fidelity data with 81% less data generation costs.
We further test the generalizability of the multi-fidelity model on a same
reservoir model with a finer discretization of 1 million grid cells. This case
was made more challenging by employing high-fidelity and low-fidelity datasets
generated by different geostatistical models and reservoir simulators. We
observe that the multi-fidelity FNO model can predict pressure fields with
reasonable accuracy even when the high-fidelity data are extremely limited. The
findings of this study can help for better understanding of the transferability
of multi-fidelity deep learning surrogate models.
Related papers
- Practical multi-fidelity machine learning: fusion of deterministic and Bayesian models [0.34592277400656235]
Multi-fidelity machine learning methods integrate scarce, resource-intensive high-fidelity data with abundant but less accurate low-fidelity data.
We propose a practical multi-fidelity strategy for problems spanning low- and high-dimensional domains.
arXiv Detail & Related papers (2024-07-21T10:40:50Z) - Gradient-enhanced deep Gaussian processes for multifidelity modelling [0.0]
Multifidelity models integrate data from multiple sources to produce a single approximator for the underlying process.
Deep Gaussian processes (GPs) are attractive for multifidelity modelling as they are non-parametric, robust to overfitting, perform well for small datasets.
arXiv Detail & Related papers (2024-02-25T11:08:19Z) - Training Deep Surrogate Models with Large Scale Online Learning [48.7576911714538]
Deep learning algorithms have emerged as a viable alternative for obtaining fast solutions for PDEs.
Models are usually trained on synthetic data generated by solvers, stored on disk and read back for training.
It proposes an open source online training framework for deep surrogate models.
arXiv Detail & Related papers (2023-06-28T12:02:27Z) - Multi-fidelity prediction of fluid flow and temperature field based on
transfer learning using Fourier Neural Operator [10.104417481736833]
This work proposes a novel multi-fidelity learning method based on the Fourier Neural Operator.
It uses abundant low-fidelity data and limited high-fidelity data under transfer learning paradigm.
Three typical fluid and temperature prediction problems are chosen to validate the accuracy of the proposed multi-fidelity model.
arXiv Detail & Related papers (2023-04-14T07:46:03Z) - Multi-fidelity surrogate modeling for temperature field prediction using
deep convolution neural network [8.98674326282801]
This paper proposes a pithy deep multi-fidelity model (DMFM) for temperature field prediction.
It takes advantage of low-fidelity data to boost the performance with less high-fidelity data.
A self-supervised learning method for training the physics-driven deep multi-fidelity model (PD-DMFM) is proposed.
arXiv Detail & Related papers (2023-01-17T03:13:45Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
We introduce Hybrid Graph Network Simulator (HGNS) for learning reservoir simulations of 3D subsurface fluid flows.
HGNS consists of a subsurface graph neural network (SGNN) to model the evolution of fluid flows, and a 3D-U-Net to model the evolution of pressure.
Using an industry-standard subsurface flow dataset (SPE-10) with 1.1 million cells, we demonstrate that HGNS is able to reduce the inference time up to 18 times compared to standard subsurface simulators.
arXiv Detail & Related papers (2022-06-15T17:29:57Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Understanding Overparameterization in Generative Adversarial Networks [56.57403335510056]
Generative Adversarial Networks (GANs) are used to train non- concave mini-max optimization problems.
A theory has shown the importance of the gradient descent (GD) to globally optimal solutions.
We show that in an overized GAN with a $1$-layer neural network generator and a linear discriminator, the GDA converges to a global saddle point of the underlying non- concave min-max problem.
arXiv Detail & Related papers (2021-04-12T16:23:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.