論文の概要: Label Dependencies-aware Set Prediction Networks for Multi-label Text Classification
- arxiv url: http://arxiv.org/abs/2304.07022v2
- Date: Thu, 14 Mar 2024 02:56:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-16 03:12:58.554590
- Title: Label Dependencies-aware Set Prediction Networks for Multi-label Text Classification
- Title(参考訳): 複数ラベルテキスト分類のためのラベル依存型セット予測ネットワーク
- Authors: Du Xinkai, Han Quanjie, Sun Yalin, Lv Chao, Sun Maosong,
- Abstract要約: グラフ畳み込みネットワークを活用し,ラベル間の統計的関係に基づいて隣接行列を構築する。
我々は,Bhattacharyya距離を設定された予測ネットワークの出力分布に適用することにより,リコール能力を向上する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-label text classification involves extracting all relevant labels from a sentence. Given the unordered nature of these labels, we propose approaching the problem as a set prediction task. To address the correlation between labels, we leverage Graph Convolutional Networks and construct an adjacency matrix based on the statistical relations between labels. Additionally, we enhance recall ability by applying the Bhattacharyya distance to the output distributions of the set prediction networks. We evaluate the effectiveness of our approach on two multi-label datasets and demonstrate its superiority over previous baselines through experimental results.
- Abstract(参考訳): マルチラベルテキスト分類では、文からすべての関連するラベルを抽出する。
これらのラベルの順序のない性質を考慮し,設定された予測タスクとして問題にアプローチすることを提案する。
ラベル間の相関に対処するために、グラフ畳み込みネットワークを活用し、ラベル間の統計的関係に基づいて隣接行列を構築する。
さらに,Bhattacharyya距離を設定された予測ネットワークの出力分布に適用することにより,リコール能力を向上させる。
提案手法の有効性を2つのマルチラベルデータセットで評価し,実験結果により,従来のベースラインよりも優れていることを示す。
関連論文リスト
- Reducing Labeling Costs in Sentiment Analysis via Semi-Supervised Learning [0.0]
本研究では,半教師付き学習におけるラベル伝搬について検討する。
テキスト分類のための多様体仮定に基づいて,トランスダクティブなラベル伝搬法を用いる。
ネットワーク埋め込みから隣接グラフ内のコサイン近接に基づくラベルを拡張することにより、ラベルなしデータを教師付き学習に組み合わせる。
論文 参考訳(メタデータ) (2024-10-15T07:25:33Z) - Substituting Data Annotation with Balanced Updates and Collective Loss
in Multi-label Text Classification [19.592985329023733]
MLTC(Multi-label text classification)は、あるテキストに複数のラベルを割り当てるタスクである。
本報告では,MLTCの問題点を,ラベル数に比例して,利用可能な監視信号の大きさが線形であるアノテーションフリーおよび希少アノテーション設定で検討する。
提案手法は,(1)事前学習した言語モデルを用いて,入力テキストを事前ラベル候補の集合にマッピングし,(2)ラベル記述による署名付きラベル依存グラフの計算,(3)ラベル依存グラフに沿ったメッセージパスによる事前ラベル候補の更新を行う。
論文 参考訳(メタデータ) (2023-09-24T04:12:52Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
不完全なラベルを持つマルチラベル認識(MLR)は非常に難しい。
最近の研究は、視覚言語モデルであるCLIPにおける画像とラベルの対応を探り、不十分なアノテーションを補うことを目指している。
我々は,MLRにおけるラベル管理の欠如を,構造化されたセマンティクスを導出することにより,不完全なラベルで修復することを提唱する。
論文 参考訳(メタデータ) (2023-03-23T12:39:20Z) - Multi-label Classification with High-rank and High-order Label
Correlations [62.39748565407201]
従来の手法では, ラベル行列を低ランク行列係数化した潜在ラベル空間に変換することにより, 高階ラベル相関を捕えることができた。
本稿では,高次ラベル相関を明示的に記述する簡易かつ効果的な手法を提案し,同時にラベル行列の高次値を維持する。
12個のベンチマークデータセットの比較研究により,マルチラベル分類における提案アルゴリズムの有効性が検証された。
論文 参考訳(メタデータ) (2022-07-09T05:15:31Z) - Graph Attention Transformer Network for Multi-Label Image Classification [50.0297353509294]
複雑なラベル間関係を効果的にマイニングできる多ラベル画像分類のための一般的なフレームワークを提案する。
提案手法は3つのデータセット上で最先端の性能を実現することができる。
論文 参考訳(メタデータ) (2022-03-08T12:39:05Z) - Why Propagate Alone? Parallel Use of Labels and Features on Graphs [42.01561812621306]
グラフニューラルネットワーク(GNN)とラベル伝搬は、ノード特性予測などのタスクにおいてグラフ構造を利用するように設計された2つの相互関連モデリング戦略を表す。
ラベルのトリックを2つの要因からなる解釈可能な決定論的学習目標に還元できることを示す。
論文 参考訳(メタデータ) (2021-10-14T07:34:11Z) - Enhancing Label Correlation Feedback in Multi-Label Text Classification
via Multi-Task Learning [6.1538971100140145]
ラベル相関フィードバックを高めるために,マルチタスク学習を用いた新しい手法を提案する。
本稿では,ラベル相関学習を強化するための2つの補助ラベル共起予測タスクを提案する。
論文 参考訳(メタデータ) (2021-06-06T12:26:14Z) - A Study on the Autoregressive and non-Autoregressive Multi-label
Learning [77.11075863067131]
本稿では,ラベルとラベルの依存関係を共同で抽出する自己アテンションに基づく変分エンコーダモデルを提案する。
したがって、ラベルラベルとラベル機能の両方の依存関係を保ちながら、すべてのラベルを並列に予測することができる。
論文 参考訳(メタデータ) (2020-12-03T05:41:44Z) - MatchGAN: A Self-Supervised Semi-Supervised Conditional Generative
Adversarial Network [51.84251358009803]
本稿では,条件付き生成逆数ネットワーク(GAN)に対する,半教師付き環境下での自己教師型学習手法を提案する。
利用可能な数少ないラベル付きサンプルのラベル空間から無作為なラベルをサンプリングして拡張を行う。
本手法は,ベースラインのトレーニングに使用したラベル付きサンプルの20%に過ぎません。
論文 参考訳(メタデータ) (2020-06-11T17:14:55Z) - Interaction Matching for Long-Tail Multi-Label Classification [57.262792333593644]
既存のマルチラベル分類モデルにおいて,制約に対処するためのエレガントで効果的なアプローチを提案する。
ソフトなn-gram相互作用マッチングを実行することで、ラベルと自然言語記述をマッチングする。
論文 参考訳(メタデータ) (2020-05-18T15:27:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。