論文の概要: OPI at SemEval 2023 Task 1: Image-Text Embeddings and Multimodal
Information Retrieval for Visual Word Sense Disambiguation
- arxiv url: http://arxiv.org/abs/2304.07127v1
- Date: Fri, 14 Apr 2023 13:45:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-17 13:26:46.531089
- Title: OPI at SemEval 2023 Task 1: Image-Text Embeddings and Multimodal
Information Retrieval for Visual Word Sense Disambiguation
- Title(参考訳): semeval 2023タスク1: 視覚障害のための画像テキスト埋め込みとマルチモーダル情報検索
- Authors: S{\l}awomir Dadas
- Abstract要約: 本稿では,SemEval 2023の視覚的単語感覚の曖昧さ共有タスクについて述べる。
提案システムは,マルチモーダル埋め込み,メソッドのランク付け学習,知識に基づくアプローチを統合している。
私たちのソリューションは多言語作業では3位にランクされ、ペルシャの3つのサブタスクのうちの1つであるトラックで優勝しました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of visual word sense disambiguation is to find the image that best
matches the provided description of the word's meaning. It is a challenging
problem, requiring approaches that combine language and image understanding. In
this paper, we present our submission to SemEval 2023 visual word sense
disambiguation shared task. The proposed system integrates multimodal
embeddings, learning to rank methods, and knowledge-based approaches. We build
a classifier based on the CLIP model, whose results are enriched with
additional information retrieved from Wikipedia and lexical databases. Our
solution was ranked third in the multilingual task and won in the Persian
track, one of the three language subtasks.
- Abstract(参考訳): 視覚的単語感覚の曖昧さの目標は、与えられた単語の意味の説明に最もよく一致する画像を見つけることである。
これは難しい問題であり、言語とイメージ理解を組み合わせるアプローチが必要です。
本稿では,本論文で提案するsemeval 2023 visual word sense disambiguation shared taskについて述べる。
提案システムは,マルチモーダル埋め込み,メソッドのランク付け学習,知識に基づくアプローチを統合する。
私たちはCLIPモデルに基づいて分類器を構築し、結果をウィキペディアと語彙データベースから検索した追加情報で豊かにする。
私たちのソリューションは多言語タスクで3位にランクされ、ペルシャのトラックで優勝しました。
関連論文リスト
- HKUST at SemEval-2023 Task 1: Visual Word Sense Disambiguation with
Context Augmentation and Visual Assistance [5.5532783549057845]
本稿では,事前学習したビジョンランゲージモデルを最大限活用するマルチモーダル検索フレームワークを提案する。
当社のシステムは,SemEval-2023 Task 1では最も競争力のある成果を上げていませんが,チームの半分近くを破ることが可能です。
論文 参考訳(メタデータ) (2023-11-30T06:23:15Z) - Large Language Models and Multimodal Retrieval for Visual Word Sense
Disambiguation [1.8591405259852054]
Visual Word Sense Disambiguation (VWSD)は、候補者の中から画像を取得することを目的とした、新しい課題である。
本稿では、様々なアプローチを適用することで、この興味深い課題を明らかにするための大きな一歩を踏み出す。
論文 参考訳(メタデータ) (2023-10-21T14:35:42Z) - Contextual Object Detection with Multimodal Large Language Models [66.15566719178327]
本稿では,コンテキストオブジェクト検出の新たな研究課題について紹介する。
言語クローゼテスト,視覚キャプション,質問応答の3つの代表的なシナリオについて検討した。
本稿では、視覚的コンテキストのエンドツーエンドの微分可能なモデリングが可能な統合マルチモーダルモデルContextDETを提案する。
論文 参考訳(メタデータ) (2023-05-29T17:50:33Z) - Universal Multimodal Representation for Language Understanding [110.98786673598015]
本研究は,一般的なNLPタスクの補助信号として視覚情報を利用する新しい手法を提案する。
各文に対して、まず、既存の文-画像ペア上で抽出された軽トピック-画像検索テーブルから、フレキシブルな画像を検索する。
そして、テキストと画像はそれぞれトランスフォーマーエンコーダと畳み込みニューラルネットワークによって符号化される。
論文 参考訳(メタデータ) (2023-01-09T13:54:11Z) - I2DFormer: Learning Image to Document Attention for Zero-Shot Image
Classification [123.90912800376039]
オンラインテキスト文書(例えばウィキペディア)には、オブジェクトクラスに関する豊富な視覚的記述が含まれている。
画像や文書のエンコードを共同で学習するトランスフォーマーベースのZSLフレームワークであるI2DFormerを提案する。
提案手法は,画像領域に文書語を接地可能な高解釈可能な結果をもたらす。
論文 参考訳(メタデータ) (2022-09-21T12:18:31Z) - 1Cademy at Semeval-2022 Task 1: Investigating the Effectiveness of
Multilingual, Multitask, and Language-Agnostic Tricks for the Reverse
Dictionary Task [13.480318097164389]
本稿では,SemEval2022タスクの逆辞書トラックに着目し,単語の埋め込みと辞書のグルースをマッチングする。
モデルは文の入力をSGNS、Char、Electraの3種類の埋め込みに変換する。
提案するElmoベースの単言語モデルが最も高い結果を得る。
論文 参考訳(メタデータ) (2022-06-08T06:39:04Z) - Building a visual semantics aware object hierarchy [0.0]
視覚的意味論を意識したオブジェクト階層を構築するための新しい教師なし手法を提案する。
この論文の直感は、概念が階層的に組織化されている現実世界の知識表現から来ています。
評価は2つの部分から構成され、まず、構築された階層をオブジェクト認識タスクに適用し、その上で、視覚的階層と既存の語彙階層を比較して、提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-02-26T00:10:21Z) - Accurate Word Representations with Universal Visual Guidance [55.71425503859685]
本稿では,視覚指導から従来の単語埋め込みを視覚的に強調する視覚的表現法を提案する。
各単語が多様な関連画像に対応するマルチモーダルシードデータセットから,小型の単語画像辞書を構築する。
12の自然言語理解および機械翻訳タスクの実験により,提案手法の有効性と一般化能力がさらに検証された。
論文 参考訳(メタデータ) (2020-12-30T09:11:50Z) - Dense Relational Image Captioning via Multi-task Triple-Stream Networks [95.0476489266988]
視覚的な場面におけるオブジェクト間の情報に関して,キャプションを生成することを目的とした新しいタスクである。
このフレームワークは、多様性と情報の量の両方において有利であり、包括的なイメージ理解につながる。
論文 参考訳(メタデータ) (2020-10-08T09:17:55Z) - Object Relational Graph with Teacher-Recommended Learning for Video
Captioning [92.48299156867664]
本稿では,新しいモデルと効果的なトレーニング戦略の両方を含む完全なビデオキャプションシステムを提案する。
具体的には,オブジェクトリレーショナルグラフ(ORG)に基づくエンコーダを提案する。
一方,教師推薦学習(TRL)手法を設計し,成功した外部言語モデル(ELM)をフル活用し,豊富な言語知識をキャプションモデルに統合する。
論文 参考訳(メタデータ) (2020-02-26T15:34:52Z) - Fine-grained Image Classification and Retrieval by Combining Visual and
Locally Pooled Textual Features [8.317191999275536]
特に、テキストの存在は、コンピュータビジョンタスクの多様性に対処するために使用されるべき強力なガイドコンテンツを提供する。
本稿では,テキスト情報と視覚的手がかりを併用した細粒度分類と画像検索の課題に対処し,両者の本質的な関係を解明する。
論文 参考訳(メタデータ) (2020-01-14T12:06:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。