論文の概要: EvalRS 2023. Well-Rounded Recommender Systems For Real-World Deployments
- arxiv url: http://arxiv.org/abs/2304.07145v3
- Date: Tue, 30 May 2023 21:23:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 02:41:42.952745
- Title: EvalRS 2023. Well-Rounded Recommender Systems For Real-World Deployments
- Title(参考訳): 2023年。
実世界展開のための良質なレコメンダシステム
- Authors: Federico Bianchi, Patrick John Chia, Ciro Greco, Claudio Pomo, Gabriel
Moreira, Davide Eynard, Fahd Husain, Jacopo Tagliabue
- Abstract要約: EvalRSは、業界や学界の実践者を集結させ、レコメンダシステムの丸い評価に関する議論を促進することを目的としている。
このワークショップは、CIKMでの昨年のワークショップの成功に基づいていますが、より広いスコープとインタラクティブなフォーマットを備えています。
- 参考スコア(独自算出の注目度): 13.970852163680002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: EvalRS aims to bring together practitioners from industry and academia to
foster a debate on rounded evaluation of recommender systems, with a focus on
real-world impact across a multitude of deployment scenarios. Recommender
systems are often evaluated only through accuracy metrics, which fall short of
fully characterizing their generalization capabilities and miss important
aspects, such as fairness, bias, usefulness, informativeness. This workshop
builds on the success of last year's workshop at CIKM, but with a broader scope
and an interactive format.
- Abstract(参考訳): EvalRSは、業界や学界の実践者たちを集めて、さまざまなデプロイメントシナリオにおける現実の影響に焦点を当てた、レコメンダシステムの丸い評価に関する議論を促進することを目的としている。
レコメンダシステムは、しばしば精度の指標によってのみ評価され、それらの一般化能力を完全に特徴づけることができず、公正性、バイアス、有用性、情報性といった重要な側面を見逃す。
このワークショップは、CIKMでの昨年のワークショップの成功に基づいているが、幅広いスコープとインタラクティブなフォーマットがある。
関連論文リスト
- CompassJudger-1: All-in-one Judge Model Helps Model Evaluation and Evolution [74.41064280094064]
textbfJudger-1は、最初のオープンソースのtextbfall-in-one judge LLMである。
CompassJudger-1は、優れた汎用性を示す汎用LLMである。
textbfJudgerBenchは、様々な主観評価タスクを含む新しいベンチマークである。
論文 参考訳(メタデータ) (2024-10-21T17:56:51Z) - Revisiting Reciprocal Recommender Systems: Metrics, Formulation, and Method [60.364834418531366]
RRSの性能を包括的かつ正確に評価する5つの新しい評価指標を提案する。
因果的観点からRSを定式化し、二元的介入として勧告を定式化する。
提案手法では,結果の一致を最大化する手法を提案する。
論文 参考訳(メタデータ) (2024-08-19T07:21:02Z) - Concept -- An Evaluation Protocol on Conversational Recommender Systems with System-centric and User-centric Factors [68.68418801681965]
本稿では,システムとユーザ中心の要素を統合した新しい包括的評価プロトコルであるConceptを提案する。
まず、現在のCRSモデルの長所と短所を概観する。
第二に、「全能」なChatGPTにおける低ユーザビリティの問題を特定し、CRSを評価するための包括的なリファレンスガイドを提供する。
論文 参考訳(メタデータ) (2024-04-04T08:56:48Z) - A Comprehensive Survey of Evaluation Techniques for Recommendation
Systems [0.0]
本稿では,システム性能の異なる側面を捉えた,総合的なメトリクススイートを紹介する。
私たちは、現在の評価プラクティスの長所と短所を特定し、さまざまなメトリクスにまたがってレコメンデーションシステムを最適化するときに現れる、微妙なトレードオフを強調します。
論文 参考訳(メタデータ) (2023-12-26T11:57:01Z) - Little Giants: Exploring the Potential of Small LLMs as Evaluation
Metrics in Summarization in the Eval4NLP 2023 Shared Task [53.163534619649866]
本稿では,大規模言語モデルに品質評価の課題を扱えるように,プロンプトベースの手法の有効性を評価することに焦点を当てる。
我々は,標準的なプロンプト,アノテータ命令によって通知されるプロンプト,イノベーティブなチェーン・オブ・シークレットプロンプトなど,様々なプロンプト技術を用いて,系統的な実験を行った。
我々の研究は、これらのアプローチを"小さな"オープンソースモデル(orca_mini_v3_7B)を使って組み合わせることで、競争結果が得られることを示した。
論文 参考訳(メタデータ) (2023-11-01T17:44:35Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
本稿では,様々なレコメンデーションシナリオにおいてフェアネスの概念を提示し,現在の進歩を包括的に分類し,レコメンデーションシステムのさまざまな段階におけるフェアネスを促進するための典型的な手法を紹介する。
次に、フェアネスを意識したレコメンデーションシステムが実業界における産業応用に与える影響について検討する。
論文 参考訳(メタデータ) (2023-06-01T07:08:22Z) - Comprehensive Fair Meta-learned Recommender System [39.04926584648665]
我々は、メタ学習モデルの公平性を確保するために、CLOVERという、総合的な公正なメタ学習フレームワークを提案する。
我々のフレームワークは、異なるメタ学習レコメンデータシステムに適用可能な、汎用的なトレーニングパラダイムを提供する。
論文 参考訳(メタデータ) (2022-06-09T22:48:35Z) - Sequential/Session-based Recommendations: Challenges, Approaches,
Applications and Opportunities [20.968084179750143]
シーケンシャルレコメンダシステム(SRS)とセッションベースレコメンダシステム(SBRS)は、RSの新しいパラダイムとして登場した。
この領域には、さまざまな説明、設定、前提、アプリケーションドメインによって、多くの矛盾がある。
この研究は、このエキサイティングで活気ある領域のさらなる研究を促進するために、これらのギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2022-05-22T06:17:36Z) - Long-term Dynamics of Fairness Intervention in Connection Recommender
Systems [5.048563042541915]
本稿では,Webスケールのソーシャルネットワークが採用するシステムにパターン化されたコネクションレコメンデータシステムについて検討する。
全体としては公平に思われるが、共通露出とユーティリティパリティの介入は、長期的なバイアスの増幅を緩和することができない。
論文 参考訳(メタデータ) (2022-03-30T16:27:48Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
本稿では,Recommender Systems (RS) 設定のための拡張多目的強化学習(SMORL)を紹介する。
SMORLエージェントは、標準レコメンデーションモデルを拡張し、RLレイヤーを追加し、3つの主要な目的(正確性、多様性、新しいレコメンデーション)を同時に満たすように強制する。
実世界の2つのデータセットに対する実験結果から,集約的多様性の顕著な増加,精度の適度な向上,レコメンデーションの反復性の低下,および相補的目的としての多様性と新規性の強化の重要性が示された。
論文 参考訳(メタデータ) (2021-10-28T13:22:45Z) - "And the Winner Is...": Dynamic Lotteries for Multi-group Fairness-Aware
Recommendation [37.35485045640196]
我々は、以前の文献は単純で一様であり、フェアネスの仮定の単次元の概念に基づいていたと論じる。
私たちは、多元的定義と交差する保護されたグループ間の正確性と公平性の間のトレードオフに参入する設計上の決定を明確に表現します。
公正な関心事を選択するための宝くじに基づくメカニズムを定式化し、その性能を2つの推奨領域で実証する。
論文 参考訳(メタデータ) (2020-09-05T20:15:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。