MLOps Spanning Whole Machine Learning Life Cycle: A Survey
- URL: http://arxiv.org/abs/2304.07296v1
- Date: Thu, 13 Apr 2023 04:12:38 GMT
- Title: MLOps Spanning Whole Machine Learning Life Cycle: A Survey
- Authors: Fang Zhengxin, Yuan Yi, Zhang Jingyu, Liu Yue, Mu Yuechen, Lu Qinghua,
Xu Xiwei, Wang Jeff, Wang Chen, Zhang Shuai and Chen Shiping
- Abstract summary: Google AlphaGos win has significantly motivated and sped up machine learning (ML) research and development.
This paper is aimed to present a clear picture of the state-of-the-art of the existing ML technologies with a comprehensive survey.
- Score: 4.910132890978536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Google AlphaGos win has significantly motivated and sped up machine learning
(ML) research and development, which led to tremendous ML technical advances
and wider adoptions in various domains (e.g., Finance, Health, Defense, and
Education). These advances have resulted in numerous new concepts and
technologies, which are too many for people to catch up to and even make them
confused, especially for newcomers to the ML area. This paper is aimed to
present a clear picture of the state-of-the-art of the existing ML technologies
with a comprehensive survey. We lay out this survey by viewing ML as a MLOps
(ML Operations) process, where the key concepts and activities are collected
and elaborated with representative works and surveys. We hope that this paper
can serve as a quick reference manual (a survey of surveys) for newcomers
(e.g., researchers, practitioners) of ML to get an overview of the MLOps
process, as well as a good understanding of the key technologies used in each
step of the ML process, and know where to find more details.
Related papers
- Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions.
In practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously.
To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment.
arXiv Detail & Related papers (2024-10-28T09:34:08Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - Machine learning in business process management: A systematic literature review [0.0]
Machine learning (ML) provides algorithms to create computer programs based on data without explicitly programming them.
Three frequent examples of using ML are providing decision support through predictions, discovering accurate process models, and improving resource allocation.
This study is the first exhaustive review of how ML has been used in BPM.
arXiv Detail & Related papers (2024-05-26T01:12:24Z) - Efficient Multimodal Large Language Models: A Survey [60.7614299984182]
Multimodal Large Language Models (MLLMs) have demonstrated remarkable performance in tasks such as visual question answering, visual understanding and reasoning.
The extensive model size and high training and inference costs have hindered the widespread application of MLLMs in academia and industry.
This survey provides a comprehensive and systematic review of the current state of efficient MLLMs.
arXiv Detail & Related papers (2024-05-17T12:37:10Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
Large Language Models (LLMs) have demonstrated remarkable capabilities in text understanding and generation.
We present an extensive overview by categorizing these works in terms of various IE subtasks and techniques.
We empirically analyze the most advanced methods and discover the emerging trend of IE tasks with LLMs.
arXiv Detail & Related papers (2023-12-29T14:25:22Z) - Machine Learning Meets Advanced Robotic Manipulation [48.6221343014126]
The paper reviews cutting edge technologies and recent trends on machine learning methods applied to real-world manipulation tasks.
The rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue.
arXiv Detail & Related papers (2023-09-22T01:06:32Z) - A Machine Learning-oriented Survey on Tiny Machine Learning [9.690117347832722]
The emergence of Tiny Machine Learning (TinyML) has positively revolutionized the field of Artificial Intelligence.
TinyML carries an essential role within the fourth and fifth industrial revolutions in helping societies, economies, and individuals employ effective AI-infused computing technologies.
arXiv Detail & Related papers (2023-09-21T09:47:12Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
Multimodal Large Language Model (MLLM) represented by GPT-4V has been a new rising research hotspot.
This paper aims to trace and summarize the recent progress of MLLMs.
arXiv Detail & Related papers (2023-06-23T15:21:52Z) - Machine Learning Operations (MLOps): Overview, Definition, and
Architecture [0.0]
The paradigm of Machine Learning Operations (MLOps) addresses this issue.
MLOps is still a vague term and its consequences for researchers and professionals are ambiguous.
We provide an aggregated overview of the necessary components, and roles, as well as the associated architecture and principles.
arXiv Detail & Related papers (2022-05-04T19:38:48Z) - Declarative Machine Learning Systems [7.5717114708721045]
Machine learning (ML) has moved from a academic endeavor to a pervasive technology adopted in almost every aspect of computing.
Recent successes in applying ML in natural sciences revealed that ML can be used to tackle some of the hardest real-world problems humanity faces today.
We believe the next wave of ML systems will allow a larger amount of people, potentially without coding skills, to perform the same tasks.
arXiv Detail & Related papers (2021-07-16T23:57:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.