A Machine Learning-oriented Survey on Tiny Machine Learning
- URL: http://arxiv.org/abs/2309.11932v2
- Date: Tue, 26 Sep 2023 14:03:32 GMT
- Title: A Machine Learning-oriented Survey on Tiny Machine Learning
- Authors: Luigi Capogrosso, Federico Cunico, Dong Seon Cheng, Franco Fummi,
Marco Cristani
- Abstract summary: The emergence of Tiny Machine Learning (TinyML) has positively revolutionized the field of Artificial Intelligence.
TinyML carries an essential role within the fourth and fifth industrial revolutions in helping societies, economies, and individuals employ effective AI-infused computing technologies.
- Score: 9.690117347832722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of Tiny Machine Learning (TinyML) has positively revolutionized
the field of Artificial Intelligence by promoting the joint design of
resource-constrained IoT hardware devices and their learning-based software
architectures. TinyML carries an essential role within the fourth and fifth
industrial revolutions in helping societies, economies, and individuals employ
effective AI-infused computing technologies (e.g., smart cities, automotive,
and medical robotics). Given its multidisciplinary nature, the field of TinyML
has been approached from many different angles: this comprehensive survey
wishes to provide an up-to-date overview focused on all the learning algorithms
within TinyML-based solutions. The survey is based on the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) methodological flow,
allowing for a systematic and complete literature survey. In particular,
firstly we will examine the three different workflows for implementing a
TinyML-based system, i.e., ML-oriented, HW-oriented, and co-design. Secondly,
we propose a taxonomy that covers the learning panorama under the TinyML lens,
examining in detail the different families of model optimization and design, as
well as the state-of-the-art learning techniques. Thirdly, this survey will
present the distinct features of hardware devices and software tools that
represent the current state-of-the-art for TinyML intelligent edge
applications. Finally, we discuss the challenges and future directions.
Related papers
- A Survey of Small Language Models [104.80308007044634]
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources.
We present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques.
arXiv Detail & Related papers (2024-10-25T23:52:28Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
Tool learning with large language models (LLMs) has emerged as a promising paradigm for augmenting the capabilities of LLMs to tackle highly complex problems.
Despite growing attention and rapid advancements in this field, the existing literature remains fragmented and lacks systematic organization.
arXiv Detail & Related papers (2024-05-28T08:01:26Z) - TinyML: Tools, Applications, Challenges, and Future Research Directions [2.9398911304923456]
TinyML is an embedded machine learning technique that enables ML applications on cheap, resource- and power-constrained devices.
This article reviews various avenues available for TinyML implementation.
arXiv Detail & Related papers (2023-03-23T15:29:48Z) - A review of TinyML [0.0]
The TinyML concept for embedded machine learning attempts to push such diversity from usual high-end approaches to low-end applications.
TinyML is a rapidly expanding interdisciplinary topic at the convergence of machine learning, software, and hardware.
This paper explores how TinyML can benefit a few specific industrial fields, its obstacles, and its future scope.
arXiv Detail & Related papers (2022-11-05T06:02:08Z) - Tiny Robot Learning: Challenges and Directions for Machine Learning in
Resource-Constrained Robots [57.27442333662654]
Machine learning (ML) has become a pervasive tool across computing systems.
Tiny robot learning is the deployment of ML on resource-constrained low-cost autonomous robots.
Tiny robot learning is subject to challenges from size, weight, area, and power (SWAP) constraints.
This paper gives a brief survey of the tiny robot learning space, elaborates on key challenges, and proposes promising opportunities for future work in ML system design.
arXiv Detail & Related papers (2022-05-11T19:36:15Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
We describe a generic retrieval-enhanced machine learning framework, which includes a number of existing models as special cases.
REML challenges information retrieval conventions, presenting opportunities for novel advances in core areas, including optimization.
REML research agenda lays a foundation for a new style of information access research and paves a path towards advancing machine learning and artificial intelligence.
arXiv Detail & Related papers (2022-05-02T21:42:45Z) - Software Engineering Approaches for TinyML based IoT Embedded Vision: A
Systematic Literature Review [0.0]
Internet of Things (IoT) has joined forces with Machine Learning (ML) to embed deep intelligence at the far edge.
TinyML (Tiny Machine Learning) has enabled the deployment of ML models for embedded vision on extremely lean edge hardware.
TinyML powered embedded vision applications are still in a nascent stage, and they are just starting to scale to widespread real-world IoT deployment.
arXiv Detail & Related papers (2022-04-19T07:07:41Z) - How to Manage Tiny Machine Learning at Scale: An Industrial Perspective [5.384059021764428]
Tiny machine learning (TinyML) has gained widespread popularity where machine learning (ML) is democratized on ubiquitous microcontrollers.
TinyML models have been developed with different structures and are often distributed without a clear understanding of their working principles.
We propose a framework using Semantic Web technologies to enable the joint management of TinyML models and IoT devices at scale.
arXiv Detail & Related papers (2022-02-18T10:36:11Z) - Widening Access to Applied Machine Learning with TinyML [1.1678513163359947]
We describe our pedagogical approach to increasing access to applied machine-learning (ML) through a massive open online course (MOOC) on Tiny Machine Learning (TinyML)
To this end, a collaboration between academia (Harvard University) and industry (Google) produced a four-part MOOC that provides application-oriented instruction on how to develop solutions using TinyML.
The series is openly available on the edX MOOC platform, has no prerequisites beyond basic programming, and is designed for learners from a global variety of backgrounds.
arXiv Detail & Related papers (2021-06-07T23:31:47Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.