HEAT: A Highly Efficient and Affordable Training System for
Collaborative Filtering Based Recommendation on CPUs
- URL: http://arxiv.org/abs/2304.07334v2
- Date: Wed, 3 May 2023 15:42:12 GMT
- Title: HEAT: A Highly Efficient and Affordable Training System for
Collaborative Filtering Based Recommendation on CPUs
- Authors: Chengming Zhang, Shaden Smith, Baixi Sun, Jiannan Tian, Jonathan
Soifer, Xiaodong Yu, Shuaiwen Leon Song, Yuxiong He, Dingwen Tao
- Abstract summary: Collaborative filtering (CF) has been proven to be one of the most effective techniques for recommendation.
There is no work that optimized SimpleX on multi-core CPUs, leading to limited performance.
We propose an efficient CF training system (called HEAT) that fully enables the multi-level caching and multi-threading capabilities of modern CPUs.
- Score: 11.007606356081435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collaborative filtering (CF) has been proven to be one of the most effective
techniques for recommendation. Among all CF approaches, SimpleX is the
state-of-the-art method that adopts a novel loss function and a proper number
of negative samples. However, there is no work that optimizes SimpleX on
multi-core CPUs, leading to limited performance. To this end, we perform an
in-depth profiling and analysis of existing SimpleX implementations and
identify their performance bottlenecks including (1) irregular memory accesses,
(2) unnecessary memory copies, and (3) redundant computations. To address these
issues, we propose an efficient CF training system (called HEAT) that fully
enables the multi-level caching and multi-threading capabilities of modern
CPUs. Specifically, the optimization of HEAT is threefold: (1) It tiles the
embedding matrix to increase data locality and reduce cache misses (thus
reduces read latency); (2) It optimizes stochastic gradient descent (SGD) with
sampling by parallelizing vector products instead of matrix-matrix
multiplications, in particular the similarity computation therein, to avoid
memory copies for matrix data preparation; and (3) It aggressively reuses
intermediate results from the forward phase in the backward phase to alleviate
redundant computation. Evaluation on five widely used datasets with both x86-
and ARM-architecture processors shows that HEAT achieves up to 45.2X speedup
over existing CPU solution and 4.5X speedup and 7.9X cost reduction in Cloud
over existing GPU solution with NVIDIA V100 GPU.
Related papers
- Efficient LLM Inference with I/O-Aware Partial KV Cache Recomputation [7.204881999658682]
Inference for Large Language Models (LLMs) is computationally demanding.
To reduce the cost of auto-regressive decoding, Key-Value ( KV) caching is used to store intermediate activations.
The memory required for KV caching grows rapidly, often exceeding the capacity of GPU memory.
A cost-effective alternative is to offload KV cache to CPU memory, which alleviates GPU memory pressure but shifts the bottleneck to the limited bandwidth of the PCIe connection between the CPU and GPU.
arXiv Detail & Related papers (2024-11-26T04:03:14Z) - Efficient Arbitrary Precision Acceleration for Large Language Models on GPU Tensor Cores [3.6385567224218556]
Large language models (LLMs) have been widely applied but face challenges in efficient inference.
We introduce a novel bipolar-INT data format that facilitates parallel computing and supports symmetric quantization.
We implement an arbitrary precision matrix multiplication scheme that decomposes and recovers at the bit level, enabling flexible precision.
arXiv Detail & Related papers (2024-09-26T14:17:58Z) - vTensor: Flexible Virtual Tensor Management for Efficient LLM Serving [53.972175896814505]
Large Language Models (LLMs) are widely used across various domains, processing millions of daily requests.
Large Language Models (LLMs) are widely used across various domains, processing millions of daily requests.
arXiv Detail & Related papers (2024-07-22T14:37:58Z) - INR-Arch: A Dataflow Architecture and Compiler for Arbitrary-Order
Gradient Computations in Implicit Neural Representation Processing [66.00729477511219]
Given a function represented as a computation graph, traditional architectures face challenges in efficiently computing its nth-order gradient.
We introduce INR-Arch, a framework that transforms the computation graph of an nth-order gradient into a hardware-optimized dataflow architecture.
We present results that demonstrate 1.8-4.8x and 1.5-3.6x speedup compared to CPU and GPU baselines respectively.
arXiv Detail & Related papers (2023-08-11T04:24:39Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - Distributed Out-of-Memory NMF on CPU/GPU Architectures [1.0051474951635875]
We propose an efficient out-of-memory implementation of the Non-negative Matrix Factorization (NMF) algorithm for HPC systems.
Benchmark results show significant improvement of 32X to 76x speedup with the new implementation using GPU over the CPU-based NMFk.
arXiv Detail & Related papers (2022-02-19T03:49:21Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
We show, that our GPU implementation provides speedups of up to 72x using single-precision and up to 452x using half-precision compared to conventional CPU algorithms.
We apply our algorithm to real-world data from injection molding manufacturing processes and discuss how found summaries help with steering this specific process to cut costs and reduce the manufacturing of bad parts.
arXiv Detail & Related papers (2021-05-25T15:55:14Z) - Efficient and Generic 1D Dilated Convolution Layer for Deep Learning [52.899995651639436]
We introduce our efficient implementation of a generic 1D convolution layer covering a wide range of parameters.
It is optimized for x86 CPU architectures, in particular, for architectures containing Intel AVX-512 and AVX-512 BFloat16 instructions.
We demonstrate the performance of our optimized 1D convolution layer by utilizing it in the end-to-end neural network training with real genomics datasets.
arXiv Detail & Related papers (2021-04-16T09:54:30Z) - GPU-Accelerated Primal Learning for Extremely Fast Large-Scale
Classification [10.66048003460524]
One of the most efficient methods to solve L2-regularized primal problems, such as logistic regression and linear support vector machine (SVM) classification, is the widely used trust region Newton algorithm, TRON.
We show that using judicious GPU-optimization principles, TRON training time for different losses and feature representations may be drastically reduced.
arXiv Detail & Related papers (2020-08-08T03:40:27Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
Kernel methods provide an elegant and principled approach to nonparametric learning, but so far could hardly be used in large scale problems.
Recent advances have shown the benefits of a number of algorithmic ideas, for example combining optimization, numerical linear algebra and random projections.
Here, we push these efforts further to develop and test a solver that takes full advantage of GPU hardware.
arXiv Detail & Related papers (2020-06-18T08:16:25Z) - Heterogeneous CPU+GPU Stochastic Gradient Descent Algorithms [1.3249453757295084]
We study training algorithms for deep learning on heterogeneous CPU+GPU architectures.
Our two-fold objective -- maximize convergence rate and resource utilization simultaneously -- makes the problem challenging.
We show that the implementation of these algorithms achieves both faster convergence and higher resource utilization than on several real datasets.
arXiv Detail & Related papers (2020-04-19T05:21:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.