論文の概要: Investigation of ensemble methods for the detection of deepfake face
manipulations
- arxiv url: http://arxiv.org/abs/2304.07395v1
- Date: Fri, 14 Apr 2023 21:18:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 19:21:43.992354
- Title: Investigation of ensemble methods for the detection of deepfake face
manipulations
- Title(参考訳): ディープフェイク顔操作検出のためのアンサンブル法の検討
- Authors: Nikolaos Giatsoglou, Symeon Papadopoulos, Ioannis Kompatsiaris
- Abstract要約: 最近のAI研究の波は、Deepfakesと呼ばれる新しい種類の合成メディアを可能にした。
ディープフェイクには素晴らしいフォトリアリズムがあり、エキサイティングな新しいユースケースを生み出しました。
これらの脅威を軽減するために、研究者たちは、従来の法医学よりも効果的で、ディープAI技術に強く依存するディープフェイク検出の新しい方法を考え出そうとしてきた。
- 参考スコア(独自算出の注目度): 21.077064523799677
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The recent wave of AI research has enabled a new brand of synthetic media,
called deepfakes. Deepfakes have impressive photorealism, which has generated
exciting new use cases but also raised serious threats to our increasingly
digital world. To mitigate these threats, researchers have tried to come up
with new methods for deepfake detection that are more effective than
traditional forensics and heavily rely on deep AI technology. In this paper,
following up on encouraging prior work for deepfake detection with attribution
and ensemble techniques, we explore and compare multiple designs for ensemble
detectors. The goal is to achieve robustness and good generalization ability by
leveraging ensembles of models that specialize in different manipulation
categories. Our results corroborate that ensembles can achieve higher accuracy
than individual models when properly tuned, while the generalization ability
relies on access to a large number of training data for a diverse set of known
manipulations.
- Abstract(参考訳): 最近のAI研究の波は、Deepfakesと呼ばれる新しい種類の合成メディアを可能にした。
ディープフェイクには印象的なフォトリアリズムがあり、エキサイティングな新しいユースケースを生み出しています。
これらの脅威を軽減するために、研究者たちは、従来の鑑識よりも効果的で、ディープai技術に大きく依存するディープフェイク検出の新しい方法を考え出した。
本稿では,アトリビューションとアンサンブル技術を用いたディープフェイク検出の先行研究を奨励する上で,アンサンブル検出器の複数の設計について検討・比較を行う。
目標は、異なる操作カテゴリを専門とするモデルのアンサンブルを活用することで、堅牢性と優れた一般化能力を達成することである。
その結果、アンサンブルは適切な調整を行うと個々のモデルよりも高い精度を達成できるのに対し、一般化能力は様々な既知の操作のための多数のトレーニングデータへのアクセスに依存することがわかった。
関連論文リスト
- Leveraging Mixture of Experts for Improved Speech Deepfake Detection [53.69740463004446]
スピーチのディープフェイクは、個人のセキュリティとコンテンツの信頼性に重大な脅威をもたらす。
本研究では,Mixture of Expertsアーキテクチャを用いた音声深度検出性能の向上のための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-24T13:24:03Z) - Diffusion Deepfake [41.59597965760673]
生成AIの最近の進歩は、主に拡散モデルを通じて、現実世界のディープフェイク検出において大きな課題を呈している。
画像の詳細、多様なコンテンツ、そして一般大衆への幅広いアクセス性におけるリアリズムの増加は、これらの洗練されたディープフェイクの識別を複雑にしている。
本稿では,最先端拡散モデルにより生成された2つの広範囲なディープフェイクデータセットを紹介する。
論文 参考訳(メタデータ) (2024-04-02T02:17:50Z) - Deepfake Sentry: Harnessing Ensemble Intelligence for Resilient Detection and Generalisation [0.8796261172196743]
本稿では,持続的かつ積極的なディープフェイクトレーニング強化ソリューションを提案する。
我々は、ディープフェイクジェネレータモデルによって導入されたアーティファクトの効果を模倣するオートエンコーダのプールを採用する。
実験の結果,提案するアンサンブル・オートエンコーダに基づくデータ拡張学習手法が一般化の点で改善されていることがわかった。
論文 参考訳(メタデータ) (2024-03-29T19:09:08Z) - Generalized Deepfakes Detection with Reconstructed-Blended Images and
Multi-scale Feature Reconstruction Network [14.749857283918157]
未確認データセットに対する堅牢な適用性を有するブレンドベース検出手法を提案する。
実験により、この手法により、未知のデータ上でのクロスマニピュレーション検出とクロスデータセット検出の両方のパフォーマンスが向上することが示された。
論文 参考訳(メタデータ) (2023-12-13T09:49:15Z) - GazeForensics: DeepFake Detection via Gaze-guided Spatial Inconsistency
Learning [63.547321642941974]
本稿では,3次元視線推定モデルから得られた視線表現を利用する,革新的なDeepFake検出手法であるGazeForensicsを紹介する。
実験の結果,提案したGazeForensicsは現在の最先端手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-13T04:48:33Z) - CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition [53.860796916196634]
クロスデータセットディープフェイク検出(CrossDF)の性能を高めるためのディープ情報分解(DID)フレームワークを提案する。
既存のディープフェイク検出方法とは異なり、我々のフレームワークは特定の視覚的アーティファクトよりも高いレベルのセマンティック特徴を優先する。
顔の特徴をディープフェイク関連情報と無関係情報に適応的に分解し、本質的なディープフェイク関連情報のみを用いてリアルタイム・フェイク識別を行う。
論文 参考訳(メタデータ) (2023-09-30T12:30:25Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
本研究では,検出問題を(一級)アウト・オブ・ディストリビューション検出タスクとして形式化する,SeeABLEと呼ばれる新しいディープフェイク検出器を提案する。
SeeABLEは、新しい回帰ベースの有界コントラスト損失を使用して、乱れた顔を事前定義されたプロトタイプにプッシュする。
我々のモデルは競合する最先端の検出器よりも高い性能を示しながら、高度に一般化能力を示す。
論文 参考訳(メタデータ) (2022-11-21T09:38:30Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
ディープフェイク(Deepfakes)として知られる非常に現実的なメディアは、現実の目から人間の目まで区別できない。
本研究では,テスト画像を再合成し,検出のための視覚的手がかりを抽出する,新しい偽検出手法を提案する。
種々の検出シナリオにおいて,提案手法の摂動に対する有効性の向上,GANの一般化,堅牢性を示す。
論文 参考訳(メタデータ) (2021-05-29T21:22:24Z) - TAR: Generalized Forensic Framework to Detect Deepfakes using Weakly
Supervised Learning [17.40885531847159]
ディープフェイクは重要な社会問題となり、それらを検出することが非常に重要です。
本研究では,異なる種類のディープフェイクを同時に検出する実用的なデジタル鑑識ツールを提案する。
レジデンシャルブロックを用いた自動エンコーダベースの検出モデルを開発し、異なる種類のディープフェイクを同時に検出する転送学習を順次実施します。
論文 参考訳(メタデータ) (2021-05-13T07:31:08Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
Deepfake技術によって生成された鍛造画像は、デジタル情報の信頼性に深刻な脅威をもたらします。
本稿では,Deepfake検出のための微妙な操作アーチファクトを異なるスケールで捉えることを目的とする。
最先端の顔スワッピングと顔の再現方法によって生成された4000のDeepFakeビデオで構成される高品質のDeepFakeデータセットSR-DFを紹介します。
論文 参考訳(メタデータ) (2021-04-20T05:43:44Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。